Name:	Date:	Section:

Water Potential Activity: Water Movement in Plants

Water Movement and Cell Survival

Phase 1: ENGAGE (8 minutes)

• Getting Started:*

Open peebedu.com and navigate to Interactive Water Potential Simulation

•	First Look:*
1.	What can you control in this simulation?
•	Solute type:
•	Solution volume:
1.	Click "Add Solute" - what happens?
1.	Think About It:
าง	do your fingers wrinkle in the bathtub?

• Essential Question:* How do cells survive in environments with different water concentrations?

Phase 2: EXPLORE (18 minutes)

• Mission 1: Understanding Water Potential*

Water potential (Ψ) = tendency of water to move

• Higher $\Psi \rightarrow \text{Lower } \Psi$ (water flows "downhill")

• Pure water: $\Psi = 0$

• Solutions: $\Psi < 0$ (negative)

Create these solutions and observe:

• Solution Comparison:*

Solute Added	Concentration	Water Potential	More or Less than Pure Water?
None (pure)	0.0M	0.00 MPa	Reference point
5 clicks sucrose	M	МРа	
5 clicks NaCl	M	МРа	
5 clicks CaCl ₂	M	МРа	

o D	iscovery:*	Which s	solute	creates	the	lowest	water	potential	at the	same	amount	?
-----	------------	---------	--------	---------	-----	--------	-------	-----------	--------	------	--------	---

• Mission 2: Cell Responses*

Insert different cells into a 0.3M sucrose solution:

∘ Cell Behavior Chart:*

Cell Type	Internal Ψs	Solution Ψs	Water Moves?	Cell Response
Plant	-0.7 MPa	In / Out	Shrinks / Swells / Same	
Animal	-0.4 MPa	In / Out	Shrinks / Swells / Same	
RBC	-0.3 MPa	In / Out	Shrinks / Swells / Same	

- Pattern:* When does water move into cells?
- Mission 3: Creating Safe Environments*

Your goal: Make each cell stay the same size (isotonic)

■ Isotonic Solutions:*

Cell Type	Target Internal Ψs	Solute Used	Clicks Needed	Final Concentration
RBC	-0.3 MPa			
Plant	-0.7 MPa			
Bacteria	-1.2 MPa			

- Challenge:* Which cell needs the most concentrated solution?
- Mission 4: Environmental Changes*

Start with plant cell in isotonic solution, then:

■ Environmental Effects:*

Action	Prediction	Observation	Explanation
Increase temp to 50°C			
Evaporate water			
Dilute solution			

Phase 3: EXPLAIN (15 minutes)

- Understanding Osmosis Through Water Potential*
- 1. The Equation:

 $\Psi s = -iCRT$

- i = particles formed (sucrose=1, NaCl=2, CaCl₂=3)
- C = concentration (molarity)
- R = constant (0.00831)
- T = temperature (Kelvin)

Why is there a negative sign?

1. Tonicity Terms:

Match the condition to the outcome:

٠,,

Hypertonic solution • • Cell swells

Hypotonic solution • • Cell shrinks

Isotonic solution • • Cell stays same

٠.,

1. Cell Survival Strategies:

How do these cells avoid bursting or shrinking?

Plant cells:
Bacteria:
1. Real-World Connections:
Explain using water potential:
Why salt kills slugs:
Why IV fluids must be isotonic:
Phase 4: ELABORATE (7 minutes)
Apply Your Knowledge*
1. Medical Application:
A patient needs IV fluids. Blood has $\Psi \approx -0.7$ MPa.
What happens with pure water IV?
Why use saline instead of pure water?
1. Agricultural Problem:

Farmers notice crops dying after road salt runoff.

• what happens to soil water potential?	
Suggest a solution:	
1. Marine Biology:	
ompare freshwater and saltwater fish:	

Comp

Environment	Water Potential	Fish Challenge	Adaptation
Freshwater	≈ 0 MPa		
Saltwater	≈ -2.4 MPa		

Phase 5: EVALUATE (7 minutes)

- Check Your Understanding*
- 1. Predict and Explain:

A plant cell (Ψ s = -0.7 MPa) is placed in each solution. Fill in:

Solution	Water Movement	Cell Response
Pure water		
0.1M sucrose		
0.5M NaCl		

1. Problem Solving:

Red blood cells burst in pure water but not in blood plasma.

■ Internal RBC Ψs:
Why cells burst:
1. Design Challenge:
Create a solution where bacterial cells neither shrink nor swell:
■ Bacterial Ψs = -1.2 MPa
Calculate concentration needed:
1. Data Analysis:
Temperature increased from 25°C to 37°C. Solution has 0.2M NaCl.
■ Original Ψs:
■ Effect on cells:
1. Critical Thinking:

Why do grocery stores spray vegetables with water?
■ Exit Reflection:*
Complete the water potential concept map:
Water Potential \rightarrow affected by \rightarrow [] and []
↓
determines → [] direction
↓
causes cells to \rightarrow [], [], or []
One real-world example I can now explain:

Extension Activities:
1. Home Investigation:Soak gummy bears in different solutions
Measure and graph size changes

- Relate to water potential
- Present findings with photos
- 1. Research Project:
- How do desert plants conserve water?

- What are aquaporins?
- How do kidneys concentrate urine?
- Create infographic
- 1. Engineering Challenge:
- Design a way to preserve cut flowers
- Test different solution concentrations
- Measure flower longevity
- Explain using water potential

Key Terms to Remember:

- Water potential (Ψ): Water's tendency to move
- Solute potential (Ψs): Effect of dissolved particles
- **Hypertonic:** Higher solute concentration (lower Ψ)
- Hypotonic: Lower solute concentration (higher Ψ)
- Isotonic: Equal solute concentration (equal Ψ)
- Plasmolysis: Cell shrinkage in hypertonic solution