Name:	Date:	Section:

Ocean Acidification Simulator Activity: pH Effects on Marine Life

Ocean Acidification: The Other CO₂ Problem

Phase 1: ENGAGE (8 minutes)

Getting Started:

Open peebedu.com and navigate to Ocean Acidification Simulator

Introduction Exploration:

- 1. Click "Introduction" to learn about ocean acidification
- 2. Study the chemical equations shown
- 3. Review the molecule guide

Initial Questions:

Current atmospheric CO:	ppm (2026)	
Current atmospheric CO ₂ : _	ppm (2026)	
Current atmospheric CO ₂ : _	ppm (2026)	

1. Predict: How will more CO ₂ affect:
Marine life:
Key Concept: The ocean absorbs ~30% of human CO ₂ emissions!
Phase 2: EXPLORE (20 minutes)
Investigation Setup:
You'll test three time periods to see how CO ₂ affects ocean chemistry.
Scenario 1: Pre-Industrial (1850)
1. Select "1850 Pre-Industrial" scenario
2. Observe molecules and coral growth for 90 seconds
3. Observe changes over time
Data Table 1: 1850 Conditions
Observations:
Coral growth rate:
System stability:
Scenario 2: Present Day (2026)
1. Poset and select "Today (2026)" scenario

Data Table 2: Current Conditions

2. Repeat observations for 90 seconds

Comparison to 1850:

pH change:
Limiting factor:
Elithiting factor.
Scenario 3: Future Projection (2100)
1. Reset and select "2100 Worst Case" scenario
2. Repeat observations
Data Table 3: Future Conditions
Critical Analysis:
Can corals grow?
Ecosystem impact:
Phase 3: EXPLAIN (15 minutes)
Understanding the Chemistry
1. The Chain Reaction:
Complete the sequence:
$CO_2 + H_2O \rightarrow H_2CO_3$ (carbonic acid)
$H_2CO_3 \rightarrow H^+ + HCO_3^-$ (bicarbonate)
$H^+ + CO_3^{2-} \rightarrow \underline{\hspace{1cm}}$
Result: More H ⁺ = Lower pH = More acidic!
1. pH Scale Review:

• pH 8.2 = Pre-industrial ocean

pH 8.1 = Current oceanpH 7.9 = Projected 2100
Small change, big impact! pH is logarithmic:
1. 1 pH drop =% increase in acidity
1. Coral Chemistry:
Corals need: $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3$ (skeleton)
Problem: More H ⁺ ions "steal" carbonate ions!
Less CO ₃ ²⁻ =
1. Real-World Connection:
Besides corals, who else needs carbonate?
• Oysters:
Sea urchins:
Pattern Summary:
As CO_2 increases \rightarrow pH \rightarrow CO_3^2 \rightarrow Shell/skeleton formation
Phase 4: ELABORATE (10 minutes)
Deeper Investigations
1. Your Custom Experiment:
Question: At what CO ₂ level do corals stop growing?
Design:
 Test CO₂ levels: 350, 400, 450, 500, 550 ppm

Measure: Final coral height after 10 years	
. Quick Test Results:	
Yes/No	
550	Yes/No
Critical threshold: ppm	
1. Ecosystem Impacts:	
Draw a simple food web showing in	npacts:

Phytoplankton \rightarrow Zooplankton \rightarrow S	small fish → Large fish
$\downarrow \downarrow$	
CO ₃ ²⁻ ions Shell formation	
If we enland to a control of our objects	
If zooplankton can't form shells:	
1. Human Connections:	
Link these to ocean acidification:	

Fossil fuel use:
Your daily activities:
Phase 5: EVALUATE (7 minutes)
Assessment Questions
1. Concept Check: (Circle the correct answer)
Ocean acidification is caused by:
a) Acid rain falling on oceans
b) CO ₂ dissolving in seawater
c) Pollution from ships
d) Rising temperatures
1. Data Analysis:
From your data, calculate:
pH drop from 1850 to 2026: units
Which period shows faster change?1. Prediction:
If CO ₂ emissions stopped today, would ocean pH:
a) Immediately return to normal
b) Continue dropping for years
c) Slowly recover over decades

Explain:		
1. Problem Solving:		
A coral reef has pH = 8.05. Corals need pH > 8.0 to survive.		
pH drops 0.02 units per decade.		
When will corals be threatened? Show work:		
1. Critical Thinking:		
List two ways to help reduce ocean acidification:		
Global scale:		
1.		
Personal scale:		
1		
Model Evaluation:		
What does this simulation show well?		

What's missing from the model?
o
Exit Question:
In one sentence, explain why ocean acidification is called "the other CO ₂ problem":
0
Take-Home Challenge:
Calculate your carbon footprint using an online calculator. How many kg of CO_2 do you produce yearly? If the ocean absorbs 30%, how much is that?
Your CO ₂ : kg/year
Ocean absorption: kg/year
1. Research local ocean pH monitoring
2. Interview a marine biologist
3. Design a CO₂ reduction plan for your school
4. Create an ocean acidification awareness poster