Name: Date: Section:

Na-K Pump Activity: Active Transport in Cells

The Cell's Ion Pump

Phase 1: ENGAGE (2 minutes)

Getting Started:

Open peebedu.com and navigate to Sodium-Potassium Pump Interactive

Look at the cell membrane with its special pump.

The Challenge:

Cells keep sodium (Na⁺) and potassium (K⁺) at different levels inside vs outside.

Quick Check:

More Na⁺: INSIDE / OUTSIDE the cell
 More K⁺: INSIDE / OUTSIDE the cell

Phase 2: EXPLORE (7 minutes)

Run the Pump

Click to operate the pump through its cycle.

What Happens:

1. Step 1 - Loading:

ATP binds to the pump

1. Step 2 - Shape Change:

Sodium ions: STAY / LEAVE
1. Step 3 - New Cargo:
Pump still facing: INSIDE / OUTSIDE
1. Step 4 - Return:
 Pump opens to: INSIDE / OUTSIDE Potassium ions: STAY / LEAVE
The Pattern:
Each cycle moves Na ⁺ out and K ⁺ in.
Energy Check:
Without ATP, the pump: WORKS / STOPS
Phase 3: EXPLAIN (4 minutes)
How It Works
1. Active Transport:
Unlike diffusion, this pump:
1. The Energy Source:
ATP provides energy for:

• ATP breaks down (loses energy)

• Pump opens to: INSIDE / OUTSIDE

Changing pump
1. Why 3:2?
Moving 3 Na ⁺ out but only 2 K ⁺ in creates:
More charge outside
1. Cell Functions:
This gradient powers:
Nerve impulses
Muscle contractions
Nutrient uptake
Phase 4: ELABORATE (1 minute)
Real Examples
Heart Medicine:
Some heart drugs partially block this pump.
Result: Heart muscle contracts more strongly.
Why?
Nerve Poison:
Some toxins completely block the pump.
Result: Paralysis
Why?

Phase 5: EVALUATE (1 minute)

Check Understanding

1. The pump needs ATP because:
1. Per cycle, the pump creates:
Higher inside, higher outside
Fuit Quanting
Exit Question:
Why is this pump so important that cells use 30% of their ATP on it?