Name	:	Date:		Section:
Gly	cogen Hydrolysis Activit	ty: Energy St	orage and	Release
Und	erstanding Glycogen Metabol	lism Through I	nteractive Mo	deling
Phas	e 1: ENGAGE (5 minutes)			
Gettir	ng Started:			
Open	peebedu.com and navigate to Glycoge	n Hydrolysis Lab		
Click '	'Start Experimenting!" after reading the	tutorial.		
Initial	Observations:			
1.	What molecular structure do you see? _			
2.	How many branch points are visible? _			
Predi	ct:			
If you	hydrolyze all bonds, how many free glu	ucose molecules wil	result?	
Phas	e 2: EXPLORE (20 minutes)			
Part A	A: Glycosidic Bond Analysis			
Using	the Hydrolyze tool, break 3 different bo	onds.		

Data Collection:

• Endergonic/Exergonic				
1. Clinical Application:				
Design an experiment to test glycogen storage disease:				
Variable tested:				
Molecular explanation:				
Real-World Connection:				
Athletes "carb-load" before events. Using the simulation:				
Model glycogen supercompensation:				
Trade-offs involved:				
Phase 5: EVALUATE (3 minutes)				
Synthesis Questions				
1. Thermodynamics:				
Rank these processes by energy requirement:				
Breaking one glycosidic bond				
Forming one glycosidic bond				
Complete glycogen hydrolysis				
Building branched polymer				

1. Evolutionary Advantage:

Consider:				
Osmotic effects:				
Energy density:				
1. Experimental Design:				
You discover a mutant organism with linear glycogen. Predict:				
Glucose mobilization rate:				
Molecular explanation:				
1. AP Exam Connection:				
Justify:				
Model Limitations:				
Identify two aspects of glycogen metabolism NOT shown:				
1				

Why did organisms evolve to store glucose as glycogen rather than free glucose?

Design a simulation experiment to demonstrate:

- Glycogen phosphorylase regulation
- Effects of epinephrine on breakdown
- Glycogen synthase activity

Your	experimental	design:	