Name:	Date:	Section:
Enzyme Environment Activity: Environmental Effects on Enzyme Function		
How Environment Shapes Enzy	me Function	
Phase 1: ENGAGE (5 minutes)		
Getting Started:		
Open peebedu.com and navigate to Enzyn	me Environmental Impact	Explorer
Click through the introduction - pay attention	on to the digestive system	n pH values!
The Challenge:		
Your digestive system is like a chemical factories do enzymes work in such varied environme	-	ions in each section. How
Quick Think:		
What happens to an egg white (prote	ein) when you cook it?	
 What might this tell us about enzyme 	es and heat?	

Your Mission:

Discover the optimal working conditions for 9 different enzymes and understand why they're perfectly suited for their locations in the body!

Phase 2: EXPLORE (20 minutes)

Part A: Learning the Controls

1. Select **Amylase** (found in saliva)

Initial	Observations	at 25°C.	pH 7:
IIII CI CII		at =0 0,	P11 I 1

• Enzyme shape: Compact / Spread out

Movement speed: Fast / Medium / SlowCharged regions visible? Yes / No
1. Temperature Test:
Keep pH at 7.0, slowly increase temperature:
•
Discovery: At what temperature does amylase unfold?°C
1. pH Test:
Reset to 37°C, adjust pH:
•
Best pH
Pro Tip: Look for the green checkmarks when you're close!
Part C: Pattern Recognition
1. Group by Location:
Stomach enzymes work best at pH:
Why the differences?

Phase 3: EXPLAIN (15 minutes)

Making Sense of Your Discoveries

1.	. Temperature Patterns (Identify 3):	
0	Pattern 2: Higher temp = m	olecular movement
1.	. pH Patterns (Identify 3):	
0	Pattern 2: Each enzyme has a	pH for its location
1.	. The Denaturation Process:	
Numb	nber these events in order:	
E	Enzyme loses function	
F	Heat breaks weak bonds	
	Active site changes shape	
F	Protein unfolds	
8	Substrate can't bind	
1.	. Location Matching:	

Explain why each enzyme's optimal pH matches its body location:

Example: Pepsin works at pH 2 because the stomach has hydrochloric acid
Your turn:
Amylase at pH 6.8:
Phase 4: ELABORATE (12 minutes)
Real-World Applications
Medical Scenarios:
1. Fever Emergency:
A child has a 104°F (40°C) fever.
Which enzymes still work normally?
 Why do doctors worry about fevers above 105°F? 1. Digestive Disorders:
A patient can't produce enough stomach acid (pH stays at 5):
Can pepsin work properly? Yes / No
Suggest a treatment:1. Food Science:

What happens to bacterial enzymes?
Why can't we eat raw chicken safely?
Docian Challenge:
Design Challenge:
Create an enzyme for extreme conditions:
 Where it works: Deep sea volcanic vent (90°C, pH 3)
How it differs from human enzymes:
Phase 5: EVALUATE (8 minutes)
Show What You Learned
1. Quick Check:
Match the condition to its effect:
High temperature • Enzyme moves slowly
Low temperature • Enzyme unfolds
Wrong pH • Enzyme shape distorts
Optimal conditions • Maximum activity
1. Graph Interpretation:

[Temperature graph space] [pH graph space]

Label: optimal point, denaturation, low activity zones

1. Problem Solving:

0	What happens to lactase enzyme?
0	Why might this cause discomfort?
1.	Big Picture:
	in why having different enzymes with different optimal conditions is an advantage gestion:
Mode	l Evaluation:
0	Coolest feature:
0	One improvement suggestion:
Ke	y Vocabulary:
0	Optimal Conditions: Temperature and pH where enzyme works best
	Denaturation: Permanent unfolding of enzyme structure
	Active Site: Part of enzyme where reaction occurs
0	pH: Measure of acidity (low) or basicity (high)

• Catalase: Enzyme that breaks down hydrogen peroxide

You eat ice cream (cold) with hot coffee.