Name:	Date:	Section:				
Enzyme Environment Activity: Environmental Effects on Enzyme Function						
Investigating Environmental E	ffects on Enzyme Fu	nction				
Phase 1: ENGAGE (5 minutes)						
Getting Started:						
Open peebedu.com and navigate to Enz	yme Environmental Impact	Explorer				
Read the introduction popup to understa	nd enzyme structure, tempe	erature, and pH effects.				
Essential Questions:						
1. How do environmental conditions a	affect enzyme structure and	function?				
2. What molecular mechanisms under	rlie enzyme denaturation? _					
Pre-Activity Predictions:						
Based on your knowledge of protein stru	cture:					
How should temperature affect enz	zyme activity?					

Phase 2: EXPLORE (20 minutes)

Systematic Investigation of Enzyme Conditions

Which digestive enzyme would work best in the stomach? ______

Part A: Enzyme Selection and Initial Observations

1. Select PepObserve er	sin first nzyme structure at 25°	°C, pH 7.0
_	ovement:	
• Structural s	state: Folded / Unfolde	ed
Part B: Tempera	ature Investigation	
1. Keep pH at	7.0, vary temperature	e systematically:
Temperature	Enzyme Activity	Ion Behavior
0°C		
20°C		
40°C		
60°C		
80°C		What happens to ion behavior at 80°C?
Phase 3: EXPI	LAIN (10 minutes)	
	anisms Analysis	
	-	
1. Temperatu	re Effects - Identify	Patterns:

• Pattern 2: Excessive heat → disruption of bonds
1. pH Effects - Cause and Effect:
Complete the molecular explanations:
• Low pH → excess H+ → protonation of groups → charge
Charge repulsion → protein → loss of
1. Structure-Function Relationship:
Explain how the simulation demonstrates:
Primary structure:
Active site integrity:
1. Digestive System Adaptation:
Match enzyme to digestive location based on optimal pH:
• Mouth (pH ~6.8):
Small intestine (pH ~8):

Phase 4: ELABORATE (10 minutes)

Real-World Applications

1. Fever Response:
Normal body temp: 37°C, Fever: 40°C
Which enzymes remain functional?
Evolutionary advantage of fever?1. Antacid Effects:
Patient takes antacids, raising stomach pH from 2 to 5:
Effect on pepsin activity:
Alternative solutions:
1. Lactose Intolerance:
Based on lactase properties:
Optimal conditions:
Effect of consuming hot beverages with dairy:
Phase 5: EVALUATE (5 minutes)

Assessment Questions

Scenario Analysis:

- 1. **Data Analysis:** Plot enzyme activity curves for one enzyme showing:
- Temperature vs. activity (bell curve)

Explain the molecular basis for each curve shape. (3 pts) 1. Pattern Application: You discover a new enzyme from thermophilic bacteria with optimal temperature of 75°C. Predict: How would you determine its denaturation temperature? _______ (3 pts) 1. Systems Integration: Explain how the simulation's visual elements (movement, charge interactions, unfolding) accurately represent: Electrostatic interactions: ______ (4 pts) **Model Evaluation:** Most accurate representation: _______

• pH vs. activity (bell curve)

Missing element:

Research Challenge:

Investigate one enzyme adaptation:

- Psychrophilic enzymes (cold-adapted)
- Thermophilic enzymes (heat-adapted)
- Acidophilic enzymes (acid-adapted)

COHDALE SHUGILIAI IEAINES IO HIESODHIIIC EHZVITES.	Compare structural	features to	mesophilic enzymes:	
--	--------------------	-------------	---------------------	--