Name:	Date:	Section:
vallie.	Date.	Section.

DNA Replication Simulator Activity: Modeling DNA Synthesis

The Amazing Process of DNA Replication

Phase 1: ENGAGE (5 minutes)
----------------------------	---

Getting Started:

Open peebedu.com and navigate to DNA Replication Simulator

Click through the introduction to learn about DNA replication.

The Big Question:

Before every cell division, DNA must be copied perfectly. How does a cell copy 3 billion base pairs without making mistakes? _____

Quick Review:

- DNA bases: A pairs with ____, G pairs with ____
- DNA strands run in opposite directions (antiparallel)
- New DNA is always built 5' to 3'

Think About It:

If you had to copy a book, would it be easier to:

- $\hfill\Box$ Copy it all at once from start to finish
- $\hfill\Box$ Copy it in sections with multiple helpers

DNA uses the second strategy! Let's see how.

Phase 2: EXPLORE (20 minutes)

Step-by-Step DNA Replication

1. Tool 1 - Topoisomerase: Select and click on the DNA What happens? Why needed? Think of untangling headphone wires! 1. Tool 2 - Helicase: Apply to the relaxed DNA What it does: _____ What shape forms? This is the "replication" **Part B: Starting Points** 1. Tool 3 - Primase: Apply to the unwound DNA Count the RNA primers: • Bottom strand (leading): _____ primer(s) **Key Insight:** DNA polymerase can't start from scratch! Part C: Building New DNA 1. Tool 4 - DNA Polymerase: Click on EACH strand separately!

Part A: Getting DNA Ready

Leading strand (bottom):

Synthesis direction: Toward / Away from fork
Lagging strand (top):
Synthesis direction: Toward / Away from fork
1. Interactive Building:
Drag the correct nucleotides!
Tips for success:
A matches with
Watch the "Need:" hint
Green = correct, Red = wrong
Part D: Finishing Up
1. Tool 5 - DNA Ligase:
Apply to complete replication
What does it connect?
These chunks are called " fragments"
Phase 3: EXPLAIN (15 minutes)

Making Sense of What You Saw

1. The Key Patterns (Find 3):
Pattern 2: Leading strand =, Lagging =
1. Fill in the Process Map:
DNA twisted \rightarrow Topoisomerase \rightarrow DNA
DNA closed \rightarrow Helicase \rightarrow DNA
No starting point \rightarrow Primase \rightarrow RNA
Template ready \rightarrow DNA Polymerase \rightarrow New
Fragments separate → Ligase → Continuous
1. The Replication Team:
Match each enzyme to its job:
Enzyme: Job:
Topoisomerase • Joins DNA pieces
 Helicase • Adds RNA starters Primase • Untwists DNA
 Primase • Untwists DNA DNA Polymerase • Unzips DNA
Ligase • Builds new DNA
1. Why Different on Each Strand?
Draw arrows showing synthesis direction:
Leading strand: ————

Lagging strand: ←—— ←——
The lagging strand is made backwards in pieces because
Phase 4: ELABORATE (12 minutes)
Real-World Connections
Application Scenarios:
1. DNA Testing:
Crime labs use PCR to copy DNA evidence.
Which enzyme is most like the one in PCR?
Why do they heat the DNA first? (Hint: What does helicase do?)
1. Cancer and Replication:
Some cancers have mutations in DNA repair enzymes.
Predict what happens if:
Polymerase makes more mistakes:
1. Antibiotics:
Some antibiotics block bacterial DNA replication.
Good target enzyme:
Why it works:
Design Challenge:

You're creating a replication inhibitor drug.

larget which step?
Side effects to consider?
Phase 5: EVALUATE (8 minutes)
Show What You Know
1. Sequence the Steps:
Number in order (1-5):
DNA polymerase synthesizes new strands
Ligase joins fragments
Helicase unwinds DNA
Primase adds RNA primers
Topoisomerase relaxes DNA
1. Explain the Difference:
Your friend asks: "Why can't both strands be copied the same way?"
Your answer:
1. Problem Solving:
A cell has a mutation - it can't make Okazaki fragments.
Which enzyme is probably broken?
One the call atil continue to DNAO Van AND ADD the U
Can the cell still replicate its DNA? Yes / No / Partially

1. Make Connections:

•	Inheritance:
•	Cancer:
Mode	el Check:
•	One thing that surprised you:

Vocabulary Summary:

How does accurate DNA replication relate to:

- Replication Fork: Y-shaped region where DNA unwinds
- Leading Strand: Synthesized continuously toward fork
- Lagging Strand: Synthesized in fragments away from fork
- Okazaki Fragments: Short DNA pieces on lagging strand
- Semiconservative: Each new DNA has one old strand, one new