Name:	Date:	Section:

DNA Replication Simulator Activity: Modeling DNA Synthosis

Synthesis
Understanding DNA Replication at the Molecular Level
Phase 1: ENGAGE (5 minutes)
Getting Started:
Open peebedu.com and navigate to DNA Replication Simulator
Read the introduction popup about DNA replication.
Essential Question:
How do cells accurately copy their entire genome before division?
Pre-Activity Review:
DNA polymerase can only add nucleotides in the' to' direction
2. Base pairing rules: A pairs with, G pairs with
Initial Hypothesis:
Why might replication be different on the two strands?
Phase 2: FXPI ORF (20 minutes)

Interactive DNA Replication Process

1. Step 1 - Topoisomerase: Click Topoisomerase and apply to DNA Why is this necessary? 1. Step 2 - Helicase: Apply Helicase to the relaxed DNA What forms at this location? Part B: Primer Addition 1. Step 3 - Primase: • Apply Primase (RNA Polymerase) · Count RNA primers added: • Lagging strand: _____ primer(s)

Part C: DNA Synthesis

Part A: Initiation

Apply to BOTH strands separatelyObserve synthesis direction:
Lagging strand moves from the fork
1. Interactive Synthesis:
 Drag correct nucleotides to match template Record any errors and corrections:
Part D: Completion
1. Step 5 - DNA Ligase:
Apply Ligase
What happens to RNA primers?
Phase 3: EXPLAIN (10 minutes)
Analysis of Replication Mechanisms
1. Key Patterns (Identify 3):

1. Step 4 - DNA Polymerase:

• Pat	tern 2: Leading strand is, lagging is
1. Ca ı	use-Effect Relationships:
Complete	e the chains:
Oompicto	, the origins.
• Ant	iparallel strands → Different synthesis patterns → fragments
• DN	A Pol can't start synthesis → Primase required →
1 Enz	zyme Function Summary:
1. =112	Jine i anotion cammary.
•	
Lig	gase
Pha	ase 4: ELABORATE (10 minutes)
_	
App	plying Concepts
Sce	enario Analysis:
•	1. Mutation in Helicase Gene:
Effe	ect on cell division:
	1. Telomere Problem:

The lagging strand can't replicate the very end of linear chromosomes.

Why not?
1. Replication Speed:
E. coli replicates at ~1000 nucleotides/second
Humans replicate at ~50 nucleotides/second
Why the difference?
1. Drug Target Design:
Many antibiotics target bacterial DNA replication.
Design a drug that would:
Target: (which enzyme)
Why selective for bacteria?

Phase 5: EVALUATE (5 minutes)

Assessment Questions

- 1. **Process Understanding:** Explain why DNA replication is called "semiconservative" using evidence from the simulation. Include the fate of original strands. (3 pts)
- Pattern Application: A new polymerase mutant can synthesize in both 5'→3' AND 3'→5' directions. How would this change replication? Would Okazaki fragments still form? (3 pts)

Systems Thinking: Connect DNA replication to:
Mutations and variation (Unit 7):
(4 pts)
Model Evaluation:
What aspects of replication are simplified?
Research Topic:
Investigate one DNA replication defect disease:
Bloom syndrome
Werner syndrome
Cockayne syndrome
Explain which enzyme is affected and consequences: