Name:	Date:	Section:
Chi-Square Activity	y: Statistical Analysi	is in Biology
Testing Genetic Predictions	with Statistics	
Phase 1: ENGAGE (5 minutes)		
Getting Started:		
Open peebedu.com and navigate to	Chi-Square Test Practice	
Click through the introduction to learn	about the chi-square test.	
The Challenge:		
You're a genetics researcher studying perfectly match predictions. How do y	•	
Initial Question:		
If you expect a 3:1 ratio and observe	78:22, is this "close enough"? _	
Key Understanding:		
The chi-square test helps us decide i important!	f differences are due to random	chance or something
Phase 2: EXPLORE (18 minutes	s)	
Investigation 1: Your First Test		

The simulation presents a random dataset. Examine it carefully.

Before Testing:

1. What type of cross is shown?
2. Do the numbers look close? Yes / No
Using the Simulation:
 Follow the prompts to enter expected values Let the simulation calculate χ² Record:
 Critical value: Conclusion: Accept / Reject the hypothesis
What This Means:
If accepted, the data the expected pattern.
If rejected, something is happening.
Investigation 2: Exploring Patterns
Click "New Problem" or try different scenarios.
Compare Different Datasets:
For each scenario you try:
Pattern Discovery:
 When is χ² usually LOW?

Investigation 3: Making Predictions

Before running each new test, predict:
Will this data "pass" the test?
Then check if you were right!
Phase 3: EXPLAIN (15 minutes)
Making Sense of Chi-Square
1. The Decision Process:
Complete this flowchart:
Calculate $\chi^2 \to \text{Compare to critical value} \to \text{If } \chi^2 \text{ is less} \to \underline{\hspace{1cm}}$ hypothesis
\rightarrow If χ^2 is greater \rightarrow hypothesis
1. What Results Tell Us:
Match the result to its meaning:
• Small χ² value:
1. Biological Explanations:
When genetic ratios don't match expectations, consider:
Genes might be (on same chromosome)

Environmental factors affecting
1. Pattern Practice:
Without calculating, predict if χ^2 will be high or low:
Scenario A: Expected 1:1, Observed 50:50
Prediction: χ² will be because
Scenario B: Expected 1:1, Observed 75:25
Prediction: χ² will be because
Phase 4: ELABORATE (10 minutes)
Applying Your Knowledge
1. Design Challenge:
Create data that would FAIL the chi-square test:
Create data that would FAIL the chi-square test: • Expected ratio: 3:1
• Expected ratio: 3:1
 Expected ratio: 3:1 Why would this fail?
 Expected ratio: 3:1 Why would this fail? 1. Linked Genes Mystery:
Expected ratio: 3:1 Why would this fail? 1. Linked Genes Mystery: Two traits usually show 9:3:3:1 ratio but you observe 12:1:1:2

A moth population was 50% light, 50% dark. After pollution, it's 20% light, 80% dark.
 Would χ² be high or low?
Data Detective:
Use the simulation to test different scenarios. Find one where:
The hypothesis is rejected
Explain why it failed:
Phase 5: EVALUATE (7 minutes)
Check Your Understanding
1. Quick Check:
χ^2 = 1.5, Critical value = 3.84
This means:
[] Data matches prediction well
[] Data doesn't match prediction
[] Test didn't work
[] Need more information
1. Interpret Results:

1. Evolution in Action:

A plant breeder expects 3:1 ratio but gets 60:40

The chi-square test shows $\chi^2 = 5.33$
This suggests:
[] The plants follow simple Mendelian genetics
[] Something else is affecting inheritance
[] The sample size is perfect
[] Random chance explains everything
1. Real-World Application:
You're studying antibiotic resistance in bacteria.
Expected ratio of resistant:sensitive is 1:3
Observed is 1:1
What would a high χ² value tell you?
What might be happening biologically?
1. Concept Connection:
Final Reflection: Why do acientists need statistical tests instead of just "evokalling" data?
Why do scientists need statistical tests instead of just "eyeballing" data?