Name: Date: Section:

Cell Diffusion Explorer Activity: Transport Across Membranes

The Amazing Cell Shape Race!

Phase 1: ENGAGE (5 minutes)

Getting Started:*

Open peebedu.com and navigate to Cell Diffusion Explorer

Read the introduction popup to learn about cells and diffusion.

Think About It:*

Have you ever wondered why you can't see most cells without a microscope? Why aren't there any basketball-sized cells rolling around?

Opening Challenge:*

Draw what you think the "best" cell shape would be for absorbing food:

[Drawing space]

- Quick Vote:* Which shape would absorb nutrients fastest?
- □ Ball shape □ Star shape □ Snake shape □ Cube shape

Phase 2: EXPLORE (18 minutes)

- The Great Cell Shape Experiment*
- Part A: Shape Testing*
- 1. Look at the Cell Shapes panel. Each shape has:
- V = Volume (how much space inside)

•	SA = Surface Area (ho	ow much "skin" it has)			
1.	1. Drag these 4 shapes into the beaker:				
•	CircleStarTall RectangleWide Rectangle				
1.	Prediction Time!				
1.	Click "Start/Resume A	II" and watch what happens!			
•	Data Table:*				
	Shape	Time to Turn All Blue	Rank (1=fastest, 4=slowest)		
	Circle				
	Circle Star				
	Star				
	Star Tall Rectangle Wide Rectangle • Part B: Weird Si	hapes* ese strange shapes:			

○ Part C: Do the Math*		
1. Calculate SA/V for two shapes:		
Circle: SA ÷ V = ÷ 100 =		
Star: SA ÷ V = ÷ 100 =		
Which has a bigger SA/V ratio?		
Which diffused faster?		
Coincidence? Yes / No		
Phase 3: EXPLAIN (12 minutes)		
Discovering the Rules of Cell Survival*		
1. Pattern Hunt (Find 3):		
Pattern 2: Round shapes absorb (faster/slower)		
1. Cause and Effect Map:		
Fill in what leads to what:		
More surface area → More → Nutrients enter		
Less volume → Less inside → Nutrients reach faster		
High SA/V ratio → absorption → Cell stays		
1. The Size Problem:		

Imagine a cell that doubles in size like a balloon:

Surface (outside): Gets (a little/a lot) bigger	
Problem: Not enough for all the	
1. Real Cells Are Smart!	
Match the cell to its clever shape:	
Cell Type: Shape Trick:	
Red blood cell • Has tiny fingers (microvilli)	
Nerve cell • Flat like a pancake	
Intestine cell • Long and branched	
Lung cell • Super thin	
Phase 4: ELABORATE (10 minutes)	
∘ Cell Shapes in Your Body*	
Body Cell Detective:*	
Different cells have different jobs. Look at their shapes:	
1. Red Blood Cells (carry oxygen):	
Shape: Flat disc with dent	
What if they were spheres?	
1. Nerve Cells (send messages):	
 Shape: Long with branches 	
Trade-off:	
Design Challenge:*	

You're designing a new cell for absorbing vitamins. Draw it:

Three features that help it absorb fast:		
1		
2		
○ Think Big Picture:*		
Why do elephants have the same size cells as mice?		
Phase 5: EVALUATE (5 minutes)		
Check Your Understanding*		
1. True or False (circle one):		
 T / F: Star-shaped cells absorb nutrients faster than round cells 		
 T / F: Cells can grow as big as they want 		
 T / F: More surface area helps cells survive 		
1. Fill in the Blanks:		
1. Problem Solver:		
Your pet cell is having trouble getting enough food.		
Give it 2 pieces of advice:		
0		

[Drawing space]

1. Draw and Explain:

Draw the worst possible cell shape for survival:		
[Drawing space]		
Why is it bad?		
Fun Fact Investigation:*		
Look up one of these and share:		
 Why octopus blood cells are different How cactus cells deal with being big What the largest single cell is Model Rating:* 		
This simulation helped me understand cells:		
One question I still have:		
o		
Vocabulary Box:		
 Diffusion: Stuff spreading from where there's lots to where there's little Surface Area (SA): The outside "skin" of the cell Volume (V): The inside space of the cell SA/V Ratio: How much skin per inside space Nutrients: Food for cells 		
Key Vocabulary: See activity for vocabulary specific to this topic.		