Name:	Date:	Section:

Cell Diffusion Explorer Activity: Transport Across Membranes

The	Cell	Size	Challenge:	Surface	Area	vs.	Volume
-----	------	------	-------------------	----------------	-------------	-----	--------

Phase 1: ENGAGE (5 minutes)

Getting Started:*

Open peebedu.com and navigate to Cell Diffusion Explorer

Read the introduction popup about diffusion and SA/V ratio.

• The Big Question:*

Why don't we have cells the size of basketballs? What stops cells from growing huge?

Quick Think:*
List 2 things cells need to get rid of:,

• Prediction Time:*

If you have cells with the same volume but different shapes, which would survive better?

□ Round cell □ Star-shaped cell □ Long thin cell

Phase 2: EXPLORE (20 minutes)

• Investigation: Shape Matters!*

- Part A: Testing Basic Shapes*
- 1. Drag these 4 shapes into the beaker:
- Circle (like a sphere)
- Star
- Tall Rectangle
- T-Shape
- 1. **Before starting**, record the data shown:

Shape	Volume	Surface Area (SA)	Your SA/V Calculation
Circle	100		
Star	100		
Tall Rectangle	100		
T-Shape	100		

- 1. Click "Start/Resume All" and watch the diffusion!
- Observation Data:*

Shape	Time to Turn Completely Blue	Rank (1=fastest)
Circle		
Star		
Tall Rectangle		
T-Shape		

- Part B: Extreme Shapes*
- 1. Reset and try these shapes:

Crescent
Squiggle
Quick Analysis:*
Slowest shape:
Part C: Finding Patterns*
1. Graph your results:
 Draw a bar graph with Shape on X-axis and Time on Y-axis Add SA/V ratios below each bar
1. Pattern Check with Partner:
Compare your results. Do you see the same pattern?
The pattern is:
Phase 3: EXPLAIN (15 minutes)
Making Sense of Surface Area and Volume*
1. The Key Patterns (Identify 3):

Amoeba

 Pattern 2: Shapes with extensions have 	SA/V
1. Why This Matters:	
Draw arrows to show cause \rightarrow effect:	
More surface area \rightarrow ? \rightarrow Faster diffusion	
Less volume \rightarrow ? \rightarrow Shorter distance to center	
High SA/V \rightarrow ? \rightarrow Better survival	
1. The Growth Problem:	
When a cell doubles in size:	
Surface area increasesX	
SA/V ratio (increases/decreases)	
	
1. Real Cell Solutions:	
Match the adaptation to its benefit:	
Cell Adaptation: Benefit:	
Microvilli • Increases reach	
Flat shape • Adds surface area	
Long projections • Minimizes volume Charling agreed - Maintains high CAAA	
 Staying small • Maintains high SA/V 	
Phase 4: ELABORATE (12 minutes)	

Connecting to Real Biology*

Look at these real cells and explain their shapes: 1. Red Blood Cell (disc-shaped): Advantage for oxygen transport: ______ 1. Nerve Cell (long with branches): Trade-off: _____ 1. Root Hair Cell (elongated): How this helps the plant: ______ • Design Challenge:* You're engineering a cell for maximum nutrient absorption. Sketch your design: [Drawing space] Explain 3 features that maximize SA/V:

• Cell Type Analysis:*

Start with one cell. It grows and divides.			
Option A: One cell doubles in sizeOption B: Cell divides into two small cells			
Which option maintains better diffusion? Why?			
Phase 5: EVALUATE (8 minutes)			
Show What You Know*			
1. Explain the Paradox:			
Elephants are huge but their cells are the same size as mouse cells. Why?			
1. Problem Solving:			
A cell is dying because it can't get nutrients fast enough.			
List 3 ways to save it:			
•			
•			
1. Pattern Application:			
You observe two unknown cells under a microscope:			
Cell A: Takes 2 minutes to absorb dye			
Cell B: Takes 8 minutes to absorb dye			
What can you infer about their shapes?			

• Population Thinking:*

1. Make a Claim:
Complete with evidence from your data:
"Cells must stay small because
My evidence is
This matters because"
Model Check:*
One limitation of this 2D model:
Extension Challenge:*
Research "surface area adaptations" in one system:
Lungs (alveoli)
Intestines (villi)
Kidneys (nephrons)
Plant roots
How do they maximize SA/V?
•
Key Concepts:

- - SA/V Ratio: Surface area divided by volume
 - **Diffusion:** Movement from high to low concentration
 - Size Constraint: Cells must stay small for efficient exchange
 - **Shape Adaptations:** Projections and flat shapes increase SA/V