Name:	Date:	Section:

Cell Diffusion Explorer Activity: Transport Across Membranes

Investigating Cell Size Limitations Through Diffusion

Phase 1: ENGAGE (5 minutes)

Getting Started:*

Open peebedu.com and navigate to Cell Diffusion Explorer

Read the introduction popup to understand SA/V ratio and its importance.

• Essential Question:*

Why are cells microscopic? What prevents them from growing indefinitely larger?

• Initial Hypothesis:*

Based on your knowledge of diffusion, predict which cell shape will complete diffusion fastest if all have the same volume:

Circle (sphere-like):		
Tall rectangle:		
Explain your reasoning:		

Phase 2: EXPLORE (20 minutes)

- Systematic Investigation of Cell Shape and Diffusion*
- Part A: Shape Comparison*

		(V)		(SA)	Ratio	(1=fastest)	
Circl	е	100					
Star		100					
Tall I	Rectangle	100					
Wide Rect	e angle	100					
	Click "Start/f Data Collect		e All" a	nd observe diffusion	1		
	Shape		Time	to 50% Diffused	Time to 100%	% Diffused	Actual Rank
	Circle						
	Star						
	Tall Rectan	ngle					

SA/V

Predicted Rank

1. Drag the following shapes into the beaker (all have V=100):

1. **Before starting diffusion**, calculate SA/V for each:

Volume

Surface Area

CircleStar

Shape

Tall Rectangle Wide Rectangle

Wide Rectangle

T-Shape

∘ Part B: Extreme Shapes*

1. Reset and test these shapes:

	Crescent
	Squiggle
0	Amoeba
0	Pattern Recognition:*
What	do they have in common?
0	Part C: Mathematical Analysis*
1.	Plot your data:
0	X-axis: SA/V ratio
0	Y-axis: Time to complete diffusion
Descr	ribe the relationship:
Phas	se 3: EXPLAIN (10 minutes)
0	Connecting Structure to Function*
1.	Identify Key Patterns (List 3):
0	Pattern 2: Shapes with projections have SA/V ratios
1.	Cause-Effect Analysis:
Comp	plete the relationships:
0	Larger SA → More membrane area → exchange points
0	Higher SA/V \rightarrow diffusion efficiency \rightarrow survival

If a sp	herical cell doubles its radius:			
Surface area increases by factor of:				
0 ;	SA/V ratio changes by factor of:			
1.	Real Cell Adaptations:			
Match	the cell type to its shape adaptation:			
0	Red blood cell • Branching projections			
	Neuron • Flattened disc			
	Root hair cell • Elongated extension			
0 /	Alveolar cell • Thin and flat			
Phas	e 4: ELABORATE (10 minutes)			
0	Applying Concepts to Biological Systems*			
0 ,	Scenario Analysis:*			
1.	Muscle Cell Problem:			
Active	muscle cells need rapid oxygen delivery.			
0 1	Why can't muscle cells just grow larger?			
1.	Intestinal Adaptation:			

Small intestine cells have microvilli (tiny projections).

1. Cell Size Limitations:

0	surface area:
0	New SA: μm²
1.	Evolutionary Trade-offs:
Some	e organisms have giant cells (bird eggs, algae).
0	What strategies might they use?
Phas	se 5: EVALUATE (5 minutes)
0	Assessment Questions*
1.	Pattern Application: A cell biologist observes that cancer cells are typically smaller than normal cells of the same type. Using SA/V principles, explain why this might provide a growth advantage. (3 pts)
1.	Data Analysis: Two cells have equal volumes. Cell A takes 30 seconds to fully diffuse nutrients, Cell B takes 90 seconds. What can you conclude about their shapes? Calculate their approximate SA/V ratio difference. (3 pts)
1.	Systems Integration: Explain how the SA/V ratio constraint connects to:
0	Membrane transport (Unit 2.4)
0	Cellular respiration needs (Unit 3)
0	Cell communication (Unit 4)
(4 pts	

Model Evaluation:*

What simplifications	does this 2	2D model	make	compared to	real	3D ce	ells? I	How	might
results differ?									

0 --

Extension Investigation:

• Research Question:* How do different organisms overcome SA/V limitations?

Investigate one example:

- Xenophyos (giant single-celled organism)
- Caulerpa (giant algae cell)
- Plasmodial slime molds

Explain the	eir structural	adaptations:	