Name:	Date:	Section:

Blood Sugar Regulation Simulator Activity: Modeling Glucose Homeostasis

Phase 1: ENGAGE (10 minutes)

Getting Started: Open peebedu.com and navigate to the Blood Sugar Regulation Simulator.

Phenomenon: Athletes can run marathons lasting several hours without eating, yet their muscles continue to function. Their blood glucose levels remain stable despite this intense energy demand.

Initial Observations:

1.	Watch the opening animation. What happens to blood glucose after a meal?
2	Predict: How might the body prevent glucose levels from staying high?
۷.	Tredict. Flow might the body prevent glacose levels from staying might:
3.	Draw your initial model of blood sugar regulation:

Phase 2: EXPLORE (15 minutes)

Investigation: Feedback Mechanisms in Glucose Regulation

Setup: Use the simulator in "Normal" mode first.

Part A: Establishing Patterns

1. Observe baseline conditions for 1 minute. Record:	
 Normal glucose range: to mg/dL 	
 What do you notice about insulin and glucagon levels? 	

Part B: Meal Response Investigation

- 1. Add a high-carbohydrate meal and observe for 3 minutes.
- 2. Create a data table tracking changes:

Time After Meal	Glucose Level	Insulin	Glucagon	What's Happening?
0 min				
15 min				
30 min				
60 min				

Part C: Exercise Investigation

1. Reset the simulation. Add moderate exercise.

2. Compare to meal response:	
 Which hormone increases during exercise? 	
Why would this be beneficial?	
Part D: Comparing Diabetes Conditions	
1. Switch to "Type 1 Diabetes" mode. Add a meal.	
2. Key observation: What's different about insulin production?	
3. Switch to "Type 2 Diabetes" mode. Add the same meal.	
4. Key observation: What's different about cellular response?	

Phase 3: EXPLAIN (10 minutes)

Building Scientific Understanding

Feedback Loop Analysis:

Complete the negative feedback loop for HIGH blood glucose:					
High glucose → Pancreas detects → released → Cells → Glucose					
Complete the negative feedback loop for LOW blood glucose:					
Low glucose → Pancreas detects → released → Liver → Glucose					
ng Connections:					
Why is this called "negative" feedback?					
How do insulin and glucagon work as antagonistic hormones?					

Claim-Evidence-Reasoning:

Question: How does the body maintain stable blood glucose despite changing conditions?

Claim: The body maintains glucose homeostasis through
Evidence: (Use specific data from your observations)
Reasoning: This evidence shows that

Phase 4: ELABORATE (10 minutes)

Real-World Applications

Scenario 1: The Student Athlete

Jamie has Type 1 diabetes and	wants to play basketball.	Use the simulator to	investigate:
-------------------------------	---------------------------	----------------------	--------------

1.	What challenges might Jamie face during practice?
2.	Test different management strategies in the simulator. What works best?
Scen	ario 2: Understanding Treatment
1	Why do Type 1 and Type 2 diabetes require different treatments?
1.	with do Type 1 and Type 2 diabetes require different freatments:
	Design an experiment using the simulator to show how insulin injections help Type 1
	diabetes:
Makiı	ng Predictions:
A per	son eats a candy bar, then immediately runs a mile. Predict the glucose curve:

Phase 5: EVALUATE (5 minutes)

Synthesis and Assessment

Revised Model:	LIndata	Mur Dhaca 1	model wit	h vaur naw	understanding	Include
Neviseu Model.	Upuale v	/Uui Filase i	IIIOUEI WIL	ii voui ii c w	unucisianumu.	IIICIUU C .

•	Organs involved (pancreas, liver, muscle, fat cells)
•	Hormones and their effects
•	Feedback loops with arrows
•	Where diabetes disrupts the system
Appli	cation Questions:
1.	Why do people with untreated diabetes often feel very thirsty?
0	
2.	Explain why someone might feel shaky and confused if they skip meals:
2	How does understanding feedback loops help us treet dishetes?
٥.	How does understanding feedback loops help us treat diabetes?
Mode	el Evaluation:
WIOGE	Evaluation.
•	One thing this model shows well: