Section:
Reproductive Isolation Activity
Modeling Speciation Through Reproductive Isolation
Background:
Speciation occurs when populations become reproductively isolated and diverge genetically. This simulation allows you to explore how different factors contribute to reproductive isolation and eventual speciation.
Phase 1: ENGAGE (10 minutes)
Getting Started: Open peebedu.com and navigate to Natural Selection and Speciation Simulation
Initial Exploration: Identify the variables you can control
Note the two traits: color (continuous) and shape (discrete) Observe the different graphs available Understand population splitting mechanism
Pre-Assessment Questions: List three prezygotic barriers that prevent interbreeding: •
• How does allopatric speciation differ from sympatric speciation?
What role does gene flow play in preventing speciation?

Date: _____

Name: _____

Phase 2: EXPLORE (30 minutes)

Investigation	1:	Baseline	Evolution	Without	Barriers

Set initial parameters:	
• Population: 200	
• Mean trait: 128	
• SD: 30	
• Shape: 50% circles	
• Mating preference: None	
• Max color difference: 100	
Run 50 generations and record:	
Data Collection - No Barriers:	
•——-	
Investigation 2: Behavioral Isolation (Assortative Mating)	
Reset simulation. Change mating preference to 'Like Shapes Prefer'	
Shape-Based Mating Data:	
•——	
%circles - %squares 25 (split)	
25 (oph)	
Divergence = Pop1 mean - Pop2 mean	
Divergence = Pop1 mean - Pop2 mean	
Divergence = Pop1 mean - Pop2 mean Investigation 4: Reproductive Compatibility	
Divergence = Pop1 mean - Pop2 mean Investigation 4: Reproductive Compatibility After 100 generations of isolation, test reproductive compatibility:	
Divergence = Pop1 mean - Pop2 mean Investigation 4: Reproductive Compatibility After 100 generations of isolation, test reproductive compatibility: • Change max color difference to 30	
Divergence = Pop1 mean - Pop2 mean Investigation 4: Reproductive Compatibility After 100 generations of isolation, test reproductive compatibility: • Change max color difference to 30 • Note if populations can still interbreed	
Divergence = Pop1 mean - Pop2 mean Investigation 4: Reproductive Compatibility After 100 generations of isolation, test reproductive compatibility: • Change max color difference to 30 • Note if populations can still interbreed Compatibility Test:	
Divergence = Pop1 mean - Pop2 mean Investigation 4: Reproductive Compatibility After 100 generations of isolation, test reproductive compatibility: • Change max color difference to 30 • Note if populations can still interbreed Compatibility Test:	
Divergence = Pop1 mean - Pop2 mean Investigation 4: Reproductive Compatibility After 100 generations of isolation, test reproductive compatibility: • Change max color difference to 30 • Note if populations can still interbreed Compatibility Test:	
Divergence = Pop1 mean - Pop2 mean Investigation 4: Reproductive Compatibility After 100 generations of isolation, test reproductive compatibility: • Change max color difference to 30 • Note if populations can still interbreed Compatibility Test:	

Phase 3: EXPLAIN (25 minutes)

,
Speciation Mechanisms Analysis
Natural Selection's Role:
Explain how predation pressure drove divergence:
Reproductive Barriers Evolution:
Complete the flowchart:
"Initial Population \rightarrow [Your barrier] \rightarrow Reduced Gene Flow \rightarrow
\rightarrow [Result] \rightarrow Reproductive Isolation \rightarrow [Final outcome] ""
Calculate selection coefficient (s) for dark creatures in light environment:
If 80% of dark creatures are eaten per generation:
• Fitness of dark (wd) = \dots
• Fitness of light (wl) = 1.0
Hybrid Zone Dynamics:
If populations meet again, predict hybrid fitness:
• Parent 1 traits:

• Hybrid traits:						

Phase 4: ELABORATE (20 minutes)

Advanced Analysis

Speciation Rate Factors:

Design expe	eriment to test effect of population size on speciation rate:
• Indep	endent variable:
• Contr	ols:
Real-Worl	d Applications:
Match the s	imulation parameters to real examples: "" Color difference barrier $ ightarrow$
	rence \rightarrow Geographic split \rightarrow Predation pressure \rightarrow
Options: Da	arwin's finches, Cichlid fish coloration, Island colonization, Sexual selection
Sympatric	Speciation Modeling:
Design setti	ings to model sympatric speciation:
• Matin	g preference:
D 1	
• Preda	tion:
Data Anal	lysis:
Calculate re	eproductive isolation using FST analog:

$$FST = (HT - HS) / HT$$

Where:

 \bullet HT = total color variance

•	HS = average	ge within-population variance
Your	calculation:	

Phase 5: EVALUATE (15 minutes)

Assessment Questions
Experimental Design:
A researcher claims shape preference alone can cause speciation. Design test:
• Null hypothesis:
• Required controls:
Data Interpretation:
Given: Pop 1 evolved mean color 45, Pop 2 evolved mean color 210 Original max color different for mating: 30
Calculate:
• Current reproductive barrier strength:

Critical Analysis:

Evaluate this claim: 'Speciation requires geographic isolation'

• Evidence for:				

• Your conclusion: _____

Concept Application:

How would you modify the simulation to model:

• Polyploid speciation: _____

- Investigate Galápagos finch speciation
- Study cichlid species flocks
- Analyze polyploid speciation in plants

Advanced Modeling:

 \bullet Add habit at preference as third trait

- Model hybrid zones
- Simulate reinforcement

Literature Connection:

- Read Mayr's biological species concept
- Compare with other species concepts
- Evaluate concept limitations
- $\bullet\,$ Hybrid zone case studies
- \bullet Mathematical models of speciation
- Current speciation research