Name:	Date:
	Section:
Powerho	use Activity
Tracking Energy Flow Through	Cellular Respiration
Background:	
-	hat releases energy from glucose and other organic ce molecules through each stage and quantify ATP
Phase 1: ENGAGE (10 minutes	s)
Getting Started: Open peebedu.com and na	wigate to Powerhouse - Cellular Respiration
Initial Exploration: Identify the four reaction	on zones in the simulation
Watch molecules move through the process	pearance Click 'Breathe' to spawn oxygen molecules inputs and outputs of cellular respiration?
Why do cells need both glucose AND oxygen?	
What happens to the energy in glucose?	-

Phase 2: EXPLORE (30 minutes)

• What electron carriers are produced? _____

Inves	stigation 1: Glycolysis
Drag	glucose to the glycolysis zone and observe.
Obse	ervations:
•	Where does glycolysis occur?
•	What products appear?
Inves	stigation 2: Pyruvate Oxidation
Move	pyruvate molecules to the pyruvate oxidation zone.
Key	Questions:
•	Where do pyruvates go after glycolysis?
•	What happens to the remaining carbon atoms?
Inves	stigation 3: Krebs Cycle
Place	acetyl-CoA molecules in the Krebs cycle zone.
Obse	ervations:
•	What shape does the cycle make?

Investigation 4: Oxidative Phosphorylation Transfer NADH and FADH ₂ to the oxidative phosphorylation zone.	
Key Observations:	
• Where do the electrons go?	
• When is ATP produced?	

Phase 3: EXPLAIN (25 minutes)

Energy Flow Through Respiration
Tracing the Path:
Complete the energy flow diagram: Glucose \rightarrow \rightarrow Krebs \rightarrow \rightarrow ATP
Key Relationships:
• Why must glycolysis happen before Krebs cycle?
• What role does oxygen play at the end?
Process Connections:
Explain the relationship between:
• Food and breathing:
Mitochondria and energy:
Regulation Concept:
Why would a cell need to control respiration rate?

Phase 4: ELABORATE (20 minutes)

Real-World Applications Without Oxygen: Run simulation without oxygen: • What happens to the process? _____ • What happens during intense exercise? _____ Different Fuels: Besides glucose, cells can use: • Fats: More or less energy per molecule? _____ • Which fuel is 'cleanest' (least waste)? _____ Temperature Effects: How might temperature affect respiration? _____ • Cold conditions: _____ Poisons and Medicine: Cyanide blocks the electron transport chain: • What would happen to a poisoned cell? _____

• How might you treat it? _____

Phase 5: EVALUATE (15 minutes)

Assessment Questions Process Understanding: Put these in order: ___ ATP synthase makes ATP ___ Glucose enters glycolysis ___ Oxygen accepts electrons ___ Krebs cycle produces CO₂ ___ Electron transport creates gradient Concept Application: Why do you breathe harder during exercise? _____ What would happen without mitochondria? _____ Critical Thinking: Why do organisms use such a complex process instead of just burning glucose? _____ Model Evaluation: What does this simulation show well? _____ What important aspects are simplified? _____ Synthesis Question: Explain why the phrase 'food is fuel' is both accurate and oversimplified: _____