Name:	Date: Section:
Osmosis Simulator Activ	rity
Investigating Osmosis: Water Movement Ac	cross Membranes
Phase 1: ENGAGE (3 minutes)	
Getting Started: Open peebedu.com and navigate to Osmosis	Simulation
Observe the red blood cell in the center.	
Essential Question: How does changing the solution concentra	tion affect cells?
Initial Prediction:	

If you put a cell in pure water, it will:

Phase 2: EXPLORE (12 minutes)

Investigation: Test Different Solutions
Use the slider to change solute concentration.
Part A: Extreme Conditions
Pure Water (0% solute):
• Cell appearance:
• Water moves: INTO / OUT OF cell
• Cell gets: BIGGER / SMALLER
High Salt (100% solute):
• Cell appearance:
• Water moves: INTO / OUT OF cell
• Cell gets: BIGGER / SMALLER
Part B: Finding Balance
Move slider slowly from 0 to 100:
ullet At what range does the cell look normal?%
• Water movement at this point: BALANCED / ONE-WAY
Part C: Pattern Recognition
The Rule of Water Movement: Water always moves from:
Visual Patterns: Match the cell appearance to the solution type:
• Shriveled cell = solution

Phase 3: EXPLAIN (7 minutes)

Cells must regulate water or they will:

Understanding Osmosis
Why Water Moves:
Water moves to balance concentrations.
• More solute outside \rightarrow Water moves
• Equal solute \rightarrow Water moves
Cell Responses:
Hypotonic (low solute outside):
• Water rushes IN
• Cell swells
• May burst (lysis)
Hypertonic (high solute outside):
• Water rushes OUT
• Cell shrinks
• Membrane pulls away (crenation)
Isotonic (equal solute):
• Water moves equally both ways
• Cell stays normal
• Dynamic equilibrium
Why This Matters:

Phase 4: ELABORATE (2 minutes)

Real-World Applications
IV Fluids: Hospital IVs must be isotonic. Why?
Preserving Food: Salt preserves meat by creating a environment. Why does covering food with salt help preserve it? What happens to bacteria when exposed to high salt concentrations?
Plant Wilting: Over-fertilizing creates hypertonic soil. Result:

Phase 5: EVALUATE (1 minute)

Quick Check

A cell in seawater will:

Water moves toward areas of:

Reflection: Why can't you drink seawater when thirsty?