Name:	Date:		
	Section:		

Na-K Pump Activity

Investigating the Na⁺/K⁺ Pump

Phase 1: ENGAGE (2 minutes)

Getting Started: Open peebedu.com and navigate to Sodium-Potassium Pump Interactive Observe the membrane and pump setup.

Essential Question: How do cells maintain different ion concentrations inside vs outside? _____

Initial Observation:

- Where is sodium concentration higher? INSIDE / OUTSIDE
- Where is potassium concentration higher? INSIDE / OUTSIDE
- This pump must work: WITH / AGAINST concentration gradients

Phase 2: EXPLORE (10 minutes)

Operate the Pump

Click through the pump cycle and observe.

Part A: The Transport Cycle

Binding Phase (Inside):

- How many Na⁺ ions bind? _____
- Pump shape: OPEN INSIDE / OPEN OUTSIDE

ATP Phase:

- What happens to ATP? _____
- The pump changes shape to: OPEN INSIDE / OPEN OUTSIDE
- Na⁺ ions are: RELEASED / STILL BOUND

Second Binding Phase (Outside):

- How many K⁺ ions bind? _____
- From which side? INSIDE / OUTSIDE
- Na⁺ ions have been: RELEASED / KEPT

Return Phase:

- The pump returns to: OPEN INSIDE / OPEN OUTSIDE
- K⁺ ions are: RELEASED / STILL BOUND
- Ready for another cycle? YES / NO

Part B: Pattern Recognition

After several cycles, observe:

Ion Movement Pattern:

- Na⁺ always moves: IN \rightarrow OUT / OUT \rightarrow IN

Energy Requirement:

Сус	eles without ATI	P: WORK / I	DON'T WO	RK		

Phase 3: EXPLAIN (6 minutes)

Understanding the Mechanism
Why ATP?
Moving ions against their gradients requires:
The 3:2 Ratio: For every ATP used, the pump moves:
• 3 Na ⁺ (in/out)
This creates a net movement of positive charge out.
Shape Changes: The pump has two main shapes:
• E1: Open, binds
ATP causes the change from to
Why This Matters:
The Na ⁺ /K ⁺ gradient is used for:

Phase 4: ELABORATE (1 minute)

Real-World Connections	
Digitalis (Heart Medicine): This drug partially blocks the pump. Effect: Na ⁺ heart cells	inside
Result: Stronger heart contractions	
Nerve Function: Without this pump, neurons couldn't:	

Phase 5: EVALUATE (1 minute)

Quick Assessment Active vs Passive: The Na⁺/K⁺ pump is active transport because: Energy Flow: Complete the sequence: _____ ATP → Pump _____ → Ions move _____ gradient → _____ established Reflection: Why do cells spend ~30% of their ATP on this one pump? _____