Name:	Date: Section:	
	Section:	
Glycogen Hydrolysis Activity		
Breaking Down Glycogen: Energy	Storage in Action	
Phase 1: ENGAGE (5 minutes)		
Getting Started: Open peebedu.com and navigat	e to Glycogen Hydrolysis Lab	
Read the tutorial, then click 'Start Experimenting	g!'	
First Look: You're looking at glycogen - how anim	nals store extra glucose for later use!	
Initial Questions: How many glucose molecules together? Why might branching be useful? _		

Think About It: When you exercise, your body needs glucose quickly. How does glycogen's

structure help? _____

Phase 2: EXPLORE (18 minutes) Investigation 1: Breaking Bonds Select the Hydrolyze tool and click on 5 different bonds. Data Table: Pattern Discovery (find 3): Investigation 2: Harvesting Glucose Use the Remove tool on free glucose molecules. Observations: • Can you remove bonded glucose? Yes / No

• What must happen first? _____

Investigation 3: Building New Molecules

Reset, then use the Dehydrate tool to create:

- 2 glucose-glucose bonds (maltose)
- 1 glucose-fructose bond (sucrose)
- 1 glucose-galactose bond (lactose)

Results:

• Water produced per bond: _____

• Connection to hydrolysis: _____

Phase 3: EXPLAIN (15 minutes)

Understanding the Chemistry		
$\mathbf{Hydrolysis} = \text{`Water Splitting'} \text{ Draw what happens: } \dots \text{```} \text{ Bond} + \mathbf{H}_2\mathbf{O} \rightarrow ?$		
"Your drawing:		
Products:		
Dehydration = 'Water Removal' Draw what happens:		
"Your drawing:		
Products:		
Energy Considerations:		
• Breaking bonds requires: energy input / energy release		
• Forming bonds involves: energy input / energy release		

Biological Importance: Match the process to its purpose:

Glycogen \to Glucose \bullet • Store excess energy Glucose \to Glycogen \bullet • Provide quick energy Many branches \bullet • Maintain blood sugar Liver glycogen \bullet • Rapid breakdown

Phase 4: ELABORATE (10 minutes)

• Reasoning: _____

Real-World Applications Marathon Running: Runners 'hit the wall' when glycogen runs out. Using the simulation, show: • Full glycogen stores: ____ glucose units • Why muscles feel weak: _____ **Diabetes Connection:** People with diabetes have trouble regulating glucose. Model these scenarios: • Too much glucose \rightarrow Build: _____ • Why balance matters: _____ Compare Storage Methods: • — Lighest Some Design Challenge: Create the most efficient glycogen structure for: • Quick energy release

Phase 5: EVALUATE (7 minutes)

Check Your Understanding
Process Order: Number these steps for breaking down glycogen: Water molecules break bond Free glucose enters bloodstream Enzymes identify bonds Glucose removed from storage
Concept Connections: True or False (circle):
\bullet T / F: Hydrolysis uses water to break bonds
\bullet T / F: All glucose must be free to be used
\bullet T / F: Branching slows down breakdown
\bullet T / F: Energy is stored in bonds
Problem Solving: An athlete needs quick energy. Which is faster?

/	
• T / F	F: Branching slows down breakdown
• T / F	F: Energy is stored in bonds
Problem S	Solving: An athlete needs quick energy. Which is faster?
Explain:	
Data Ana	alysis: If you start with 50 water molecules and end with 35:
• Bond	ls broken:
• Show	your math:
Model Ap	oplication: Your body stores about 500g of glycogen. If each glucose = 180g/mol:
• Appre	oximate glucose molecules:
Reflection	: How did manipulating molecules help you understand energy storage?
Plants stor	re glucose as starch (less branched). Based on your observations, predict:
• Break	kdown speed compared to glycogen:
• Disad	dvantage for animals:

• -

Key Vocabulary:

• Glycogen: Animal starch (glucose polymer)

• Hydrolysis: Breaking bonds with water

• Dehydration Synthesis: Forming bonds, releasing water

• Polymer: Large molecule of repeated units

• Monomer: Single unit (glucose)