Name:	Date: Section:
Natural Selection Isl	land Simulation Activity
Island Evolution: Natural Selec	ction in Action
Phase 1: ENGAGE (2 minutes))
Getting Started: Open peebedu.com and na	avigate to Natural Selection Island Simulation
Click 'Introduction' to learn about the simul	lation.
The Setup: You'll observe insects migrating be matching color!	between islands. Each colored island favors insects of
Quick Prediction:	

If red insects start on a green island, they will:

Phase 2: EXPLORE (8 minutes)

Run the Simulation
Start with default settings. Watch for patterns.
Observation 1: Color Matching After 100 frames, which color dominates each island?
• Green island:

D 1	• 1 1			
Ked	island:			

Observation 2: Black Insects Black insects can survive on both green AND brown islands.

• Where do most black insects end up?						

Experiment: Island Isolation Reset and change Water Survival to 0.3 (very low).

- Do insects still migrate? YES / NO / RARELY
- $\bullet\,$ Each island's population becomes: MIXED / PURE

Experiment: Strong Selection Reset and change Green Island Selection to 10 (very high).

- $\bullet\,$ Non-green insects on green island: SURVIVE / DIE QUICKLY
- Green insects spread: FASTER / SLOWER
- Strong selection makes evolution: FASTER / SLOWER

Phase 3: EXPLAIN (7 minutes)

Understanding Evolution
Natural Selection Pattern: Complete the sequence:
Environmental pressure \rightarrow survival \rightarrow Population
Four Factors of Evolution: Match what you saw to each factor:
• Insects randomly change color =
• Insects move between islands =

Factors: Natural Selection, Mutation, Migration, Genetic Drift

Isolation Effects: When islands are isolated (low water survival):

- Gene flow: INCREASES / DECREASES
- Each population: STAYS SAME / BECOMES UNIQUE
- New species could: FORM / NOT FORM

Phase 4: ELABORATE (2 minutes)

Real-World Connections
Galápagos Finches: Different islands have different food sources (like different colors). Result:
Antibiotic Resistance: If colors were resistance levels and islands were hospitals:
• Migration =
Climate Change: As habitats change (island colors shift), populations must:

Phase 5: EVALUATE (1 minute)

Show Understanding
Complete the concept map:
Different environments \to Apply \to Favors certain \to Population over time \to Evolution
Exit Question: Why don't all insects just become black (the generalist)? What's the advantage of being specialized?
ullet –
Think About It: How does this simulation help explain why isolated islands often have unique species found nowhere else?