Name:	Date:
	Section:
Natural Selection	Island Simulation Activity
Modeling Natural Selection of	on Island Populations
Phase 1: ENGAGE (3 minute	es)
Getting Started: Open peebedu.com and	l navigate to Natural Selection Island Simulation
Click 'Introduction' to understand the sir	nulation.
Initial Understanding:	
• How many islands?	
• Insect colors available:	
Essential Question: How do separated pressures?	populations evolve differently under various selection

Phase 2: EXPLORE (10 minutes)

Investigation A: Natural Selection in Action

Use default settings and click 'Start'. Observe for ~200 frames.

Pattern Recognition:

 Which in 	hich insects dominate on the green island?					

• What happens to mismatched colors? _____

Migration Observations:

• Do insects move between islands? YES / NO

• What affects survival during crossing? _____

Investigation B: Changing Conditions

Reset and try these changes:

Reduce Water Survival (to 0.5):

• Islands become: MORE / LESS connected

• Populations become: MORE / LESS isolated

• Evolution happens: FASTER / SLOWER on each island

Increase Red Island Selection Strength (to 10):

• Non-red insects on red island: INCREASE / DECREASE

• Red population becomes: MORE / LESS pure

• Time to reach color dominance: FASTER / SLOWER

Phase 3: EXPLAIN (8 minutes)

Understanding the Mechanisms

Selection Pressure: Each colored island favors matching insects. This demonstrates:

Gene Flow Impact: When water survival is HIGH:

• Populations: MIX / STAY SEPARATE

• Evolution: SPEEDS UP / SLOWS DOWN

• Islands become: MORE / LESS similar

When water survival is LOW:

• Each island evolves: INDEPENDENTLY / TOGETHER

• Unique populations: DEVELOP / DON'T DEVELOP

Generalist vs Specialist: Black insects survive on green AND brown islands. This strategy is: RISKY / SAFE Because: _____

Founder Effect Connection: If only a few insects reach a new island, the population will:

Phase 4: ELABORATE (3 minutes)

• Result = • Result = Conservation Biology: Habitat fragmentation is like lowering water survival because:		
• Islands = • Result = Conservation Biology: Habitat fragmentation is like lowering water survival because: antibiotic Resistance: If islands were 'hospitals and colors were resistance traits':	Real-World Applications	
• Result = Conservation Biology: Habitat fragmentation is like lowering water survival because: Antibiotic Resistance: If islands were 'hospitals and colors were resistance traits':	Darwin's Finches: How does this simulation model the Galápagos?	
Conservation Biology: Habitat fragmentation is like lowering water survival because:antibiotic Resistance: If islands were 'hospitals and colors were resistance traits':	• Islands =	
Conservation Biology: Habitat fragmentation is like lowering water survival because:		
onservation Biology: Habitat fragmentation is like lowering water survival because:		
onservation Biology: Habitat fragmentation is like lowering water survival because:		
Conservation Biology: Habitat fragmentation is like lowering water survival because:	. D14	
antibiotic Resistance: If islands were 'hospitals and colors were resistance traits':	• Result =	
•	onservation Biology: Habitat fragmentation is like lowering water survival because:	
• Migration would represent:	ntibiotic Resistance: If islands were 'hospitals and colors were resistance trai	ts':
•	• Migration would represent:	

Phase 5: EVALUATE (1 minute)

Quick Assessment	
Key Concepts: Match the observation to the evolutionary force:	
• Red insects increase on red island:	
• Insects move between islands:	
Options: Natural Selection, Mutation, Gene Flow	
Prediction:	
If you made all islands the same color, what would happen?	
• -	
Reflection: How does geographic separation lead to evolution of new species?	