| Name: Date:
Section: | |--| | Epigenetics Activity | | DNA: The Ultimate Instruction Manual! | | Phase 1: ENGAGE (5 minutes) | | Getting Started: Open peebedu.com and navigate to Epic Genetics | | Watch the Tutorial, then click 'Generate DNA' - you just created a gene! | | The Mystery: Your cells are like factories that need instructions to build things. DNA has those instructions, but it's stuck in the nucleus (the cell's control center). How do the instructions get to the factory floor? | | First Observations: Look at your DNA: | | • Green parts = Instructions that matter (exons) | | • Gray parts = Instructions to skip (introns) | | Quick Question: If DNA is so important, why does it have parts we don't use (introns)? Your | guess: _____ ## Phase 2: EXPLORE (18 minutes) ### Building Proteins Step by Step Think of this like following a recipe to bake cookies! | Step 1: Turn on the Gene Click the 'Promoter' card Click 'Execute' | | | | | |--|--|--|--|--| | What happened? | This is like turning on the oven before baking! | | | | | | Step 2: Copy the Recipe (Transcription) Click 'RNA Polymerase' Click 'Execute' | | | | | | What appeared below? | | | | | | | | | | | You just made RNA - a working copy of DNA! Step 3: Edit the Instructions Click 'Spliceosome' Click 'Execute' Click on one of your RNA copies What disappeared? ____ (introns/exons) What's left? ____ (introns/exons) It's like removing the notes from a recipe, keeping only the steps! ### Step 4: Protect Your Message Add these to your edited RNA: - Click '5', Cap' → Like putting a cover on your recipe - ullet Click 'Poly-A Tail' o Like laminating the back Why protect RNA? So it doesn't fall apart! ### Step 5: Make the Protein! Select BOTH: - 'tRNA' (the delivery trucks) - 'rRNA' (the factory workers) Click 'Execute' and select your protected RNA #### Your Results: • Protein made? Yes / No # Phase 3: EXPLAIN (12 minutes) | Understanding What Just Happen | nec | d | |--------------------------------|-----|---| |--------------------------------|-----|---| **The Journey:** Number these in order (1-5): ___ Remove the gray parts (introns) ___ Make protein from RNA ___ Copy DNA to RNA ___ Add protective caps ___ Add promoter to start The Workers: Match each tool to its job: RNA Polymerase \bullet Cuts out introns Spliceosome \bullet Copies DNA tRNA \bullet Makes the ribosome rRNA \bullet Brings amino acids Color Code the Process: Draw arrows and color each step: $DNA (blue) \rightarrow RNA (red) \rightarrow Edited RNA (orange) \rightarrow Protein (green)$ ### What If? Mutations! Click 'Mutagen' - it changes one letter in DNA Original letter: _____ New letter: _____ Like changing 'add sugar to add salt' in a recipe! # Phase 4: ELABORATE (10 minutes) ### **Cool Connections** • Result: _____ | one r | | |-------------------|---| | Try ' | Alt Spliceosome' on another RNA: | | • | Regular splicing kept exons: | | | | | | | | • | Same DNA, different protein! | | в. с | RISPR = Gene Editing Like using white-out to fix a typo in your recipe! | | C1: -1- | | | CHCK | 'CRISPR' and try it: | | • | What could you change? | | •
C. R | What could you change?eal-Life Examples: Sickle Cell Disease: | | •
C. R | What could you change?eal-Life Examples: Sickle Cell Disease: One letter change: $A \to T$ | | •
C. R
• | What could you change? $___$ eal-Life Examples: Sickle Cell Disease: One letter change: A \to T Changes protein shape | | •
C. R
• | What could you change? \dots eal-Life Examples: Sickle Cell Disease: One letter change: $A \to T$ Changes protein shape Red blood cells become sickle-shaped | | • C. R • • • Lact | What could you change? \dots eal-Life Examples: Sickle Cell Disease: One letter change: $A \to T$ Changes protein shape Red blood cells become sickle-shaped ose Tolerance: | | C. R • • Lact | What could you change? \dots eal-Life Examples: Sickle Cell Disease: One letter change: $A \to T$ Changes protein shape Red blood cells become sickle-shaped | | • C. R • • • Lact | What could you change? eal-Life Examples: Sickle Cell Disease: One letter change: $A \to T$ Changes protein shape Red blood cells become sickle-shaped ose Tolerance: Mutation keeps gene 'on' | | C. R Lact | What could you change? \dots eal-Life Examples: Sickle Cell Disease: One letter change: $A \to T$ Changes protein shape Red blood cells become sickle-shaped ose Tolerance: Mutation keeps gene 'on' Adults can digest milk | ### Phase 5: EVALUATE (5 minutes) | Show | What | You | Learned | |------|------|-----|---------| | | | | | Fill in the Blanks: DNA contains the _____ for making proteins. First, RNA ____ copies the instructions. Then ____ removes the introns. Finally, ____ and ___ work together to build the protein. True or False (circle): - T / F: DNA leaves the nucleus - T / F: All of DNA codes for proteins - T / F: One gene can make different proteins - T / F: Mutations always cause problems **Draw the Journey:** Make a simple comic strip (4 panels) showing DNA \rightarrow Protein: [Panel 1] [Panel 2] [Panel 3] [Panel 4] ### Explain to a Friend: Your friend asks: 'Why can't cells just use DNA directly?' Your answer: _____ Rate This Simulation: Confusing Okay Cool Awesome! One Question I Still Have: Fun Challenge: Count how many different proteins you can make from your one DNA sequence using different combinations! • - ### Genetics Vocabulary: • Gene: Instructions for one trait • Transcription: Copying DNA to RNA • Translation: Making protein from RNA • Mutation: Change in DNA sequence • CRISPR: Tool for editing genes # Key Vocabulary See activity for vocabulary specific to this topic.