Name:	Date: Section:
Epigenetics Activity	
Building Proteins: The Cell's Instruction Manual	
Phase 1: ENGAGE (5 minutes)	
Getting Started: Open peebedu.com and navi	gate to Epic Genetics
Click 'Tutorial for a quick overview, then	Generate DNA' to create your gene!
The Big Picture: Your DNA is like a recipe by read these recipes to make proteins?	book, but it's locked in the nucleus. How do cells
First Look at Your DNA:	
• How many green sections (exons)?	
\bullet Can you find ATG (start signal)? Where?	

Think About It: Why might DNA have parts that don't code for proteins (introns)? _____

Phase 2: EXPLORE (20 minutes)

Step-by-Step Protein Production
Part A: Getting Ready to Copy (Transcription)
Add the Green Light:
ullet Click 'Promoter $ o$ Execute'
• This is like putting a 'START HERE' sign for the cell!
Make RNA Copies:
ullet Click 'RNA Polymerase $ o$ Execute'
• Count your RNA transcripts:
Power Boost!
• Now try 'RNA Polymerase + Transcription Factor' together
• Conclusion: Transcription factors RNA production
Part B: Editing the Message (RNA Processing)
Cut Out the Junk:
ullet Click 'Spliceosome $ o$ Execute'
• Click on a transcript when prompted
• What remains?

Try Alternative Editing:

• Use 'Alt Spliceosome' on another transcript

• Different result? Yes / No	
Protect the Message: Add to your spliced RNA:	
• 5' Cap - Why?	
Part C: Making the Protein (Translation)	
The Translation Team: Select BOTH tRNA and rRNA \rightarrow Execute	
• Click your protected mRNA	
• Number of amino acids:	

Phase 3: EXPLAIN (15 minutes)

Understanding the Process
The Journey Map: Fill in what happens at each step:
$\mathrm{DNA} \to [___] \to \mathrm{RNA} \to [___] \to \mathrm{mRNA} \to [___] \to \mathrm{Protein}$
Processes: Transcription, Splicing, Translation
The Key Players: Match each tool to its job:
Tool: Job:
• RNA Polymerase • Removes introns
• Spliceosome • Carries amino acids
\bullet tRNA \bullet Reads DNA
\bullet rRNA \bullet Forms ribosome
Pattern Recognition (Find 3):
• Pattern 1: All proteins start with (amino acid)
• Pattern 3: Both caps are needed for
The Mutation Game: Click 'Mutagen' and execute:
• What changed?
• Could this affect protein function?

Phase 4: ELABORATE (12 minutes)

Real-World Connections	
Gene Editing with CRISPR: Click 'CRISPR' and try changing one codon:	
• Original:	
• Result:	
Why is precise editing important?	
Alternative Splicing = Multiple Products: From your DNA, create:	
• Protein 1 with exons:	
Real example: One gene can make 38,000 different proteins in your brain!	
Disease Connection: If a mutation creates an early STOP codon:	
• Normal protein: 100 amino acids	
• Mutated protein: 25 amino acids	
• Disagge grammler Mugaulan dreatnanhu	
Disease example: Muscular dystrophy	
Design Challenge:	
You're studying a genetic disease. Design an experiment:	
• Which tools would you use?	

 \bullet How would you fix it? _____

Phase 5: EVALUATE (8 minutes)

Show What You Know
Sequence the Steps: Number in order (1-7): Add poly-A tail RNA polymerase copie DNA Proteins fold into shape Remove introns Add 5' cap tRNA brings amino acids Promoter signals start
Troubleshooting: Translation isn't working. Check:
• Is mRNA spliced? Yes / No
• Has 5' cap? Yes / No
• Has poly-A tail? Yes / No
Predict the Effect:
A mutation changes UGG (Tryptophan) to UGA (Stop). • Effect on protein:
• Severity: Mild / Moderate / Severe
Big Picture Question: Why do cells go through all these steps instead of making proteins directly from DNA?
Give 2 reasons:
1

7a / 1 1 1	D .
Model	Review:
MIOUCI	TIC VIC W.

• Coolest feature: ____

• One improvement: _____

Quick Reference:

• Exon: Coding sequence (EXpressed)

• Intron: Non-coding sequence (INTerrupting)

• Codon: 3-letter RNA code for one amino acid

• Start Codon: AUG (Methionine)

• Stop Codons: UAA, UAG, UGA