Name:	Date:
	Section:
Epigene	etics Activity
Exploring the Central Dogma	Through Interactive Modeling
Phase 1: ENGAGE (5 minutes	s)
Getting Started: Open peebedu.com and n	navigate to Epic Genetics
Click 'Tutorial to review the interface	e, then Generate DNA' to begin.
•	nformation flow from DNA to proteins? What he expression? How do mutations and RNA
Initial Analysis: Examine your generated	DNA sequence:
• Number of exons:	
• Start codon (TAC in DNA \rightarrow AUG in	RNA) present? Yes / No

Phase 2: EXPLORE (20 minutes)

Part A: Transcription Process Promoter Addition: • Select 'Promoter' and execute • Why is this necessary? _____ RNA Synthesis: • Select 'RNA Polymerase' alone and execute • Now select both 'RNA Polymerase + Transcription Factor' • Effect of transcription factor: _____ Transcript Analysis: Record the RNA sequence for one transcript: 1 Regulatory Predictions: If a mutation occurred in the promoter region: • Effect on transcription: _____

• Clinical significance: _____

Phase 5: EVALUATE (5 minutes)

Assessment Questions

Process Understanding: Explain why both 5' cap and poly-A tail are required for translation in eukaryotes. Include their molecular functions. (3 pts)

Data Analysis: You observe a protein that's shorter than expected. List three possible molecular explanations based on your simulation experience. (3 pts)

Systems Integration: Design an experiment using the simulation tools to test whether a specific

Expected resu	lts:		
)			
el Evaluation	ı :		
Most accurate	representation:		

- Splicing defects (e.g., -thalassemia)
- Nonsense mutations (e.g., DMD)
- Promoter mutations (e.g., some cancers)

Explain how the simulation helps understand the molecular basis: _____