Name:	Date: Section:
Enzyme Env	rironment Activity
How Environment Shapes Enz	yme Function
Phase 1: ENGAGE (5 minutes	5)
Getting Started: Open peebedu.com and n	navigate to Enzyme Environmental Impact Explorer
Click through the introduction - pay attention	on to the digestive system pH values!
The Challenge: Your digestive system is like section. How do enzymes work in such varied	ke a chemical factory with different conditions in each denvironments?
Quick Think:	
• What happens to an egg white (protein	n) when you cook it?

Your Mission: Discover the optimal working conditions for 9 different enzymes and understand why they're perfectly suited for their locations in the body!

 \bullet What might this tell us about enzymes and heat? _____

Phase 2: EXPLORE (20 minutes)

Part A: Learning the Controls
Select Amylase (found in saliva)
Initial Observations at 25°C, pH 7:
• Enzyme shape: Compact / Spread out
• Movement speed: Fast / Medium / Slow
• Charged regions visible? Yes / No
Temperature Test: Keep pH at 7.0, slowly increase temperature:
•——-
Discovery: At what temperature does amylase unfold?°C
pH Test: Reset to 37°C, adjust pH:
•——-
Best pH ———
Pro Tip: Look for the green checkmarks when you're close!
Part C: Pattern Recognition
Tare C. Lattern Recognition
Group by Location:
Group by Location:
Group by Location:

Phase 3: EXPLAIN (15 minutes)

Making Sense of Your Discoveries
Temperature Patterns (Identify 3):
• Pattern 1: All human enzymes work best around°C (Hint: body temp!)
• Pattern 3: Too hot = enzyme (unfolds permanently)
pH Patterns (Identify 3):
• Pattern 1: Extreme pH causes charged regions to
• Pattern 3: Wrong pH = wrong = no function
The Denaturation Process: Number these events in order: Enzyme loses function Hea
breaks weak bonds Active site changes shape Protein unfolds Substrate can't bind
Location Matching: Explain why each enzyme's optimal pH matches its body location:
Example: Pepsin works at pH 2 because the stomach has hydrochloric acid
Your turn:
• Amylase at pH 6.8:

Phase 4: ELABORATE (12 minutes)

Real-World Applications
Medical Scenarios:
Fever Emergency: A child has a 104°F (40°C) fever.
• Which enzymes still work normally?
• Why do doctors worry about fevers above 105°F?
Digestive Disorders: A patient can't produce enough stomach acid (pH stays at 5):
• Can pepsin work properly? Yes / No
• Suggest a treatment:
Food Science: Why do we cook meat?
• What happens to bacterial enzymes?
• Why can't we eat raw chicken safely?
Design Challenge:
Create an enzyme for extreme conditions:
• Where it works: Deep sea volcanic vent (90°C, pH 3)
• How it differs from human enzymes:

Phase 5: EVALUATE (8 minutes)

Show What You Learned
Quick Check: Match the condition to its effect:
• High temperature • Enzyme moves slowly
• Low temperature • Enzyme unfolds
\bullet Wrong pH \bullet Enzyme shape distorts
• Optimal conditions • Maximum activity
Graph Interpretation: Sketch enzyme activity curves: [Temperature graph space] [pH graph space]
Label: optimal point, denaturation, low activity zones
Problem Solving: You eat ice cream (cold) with hot coffee.
• What happens to lactase enzyme?
• Why might this cause discomfort? Big Picture: Explain why having different enzymes with different optimal conditions is an advantage for digestion:
Model Evaluation:
• Coolest feature:
• One improvement suggestion:
Key Vocabulary:
• Optimal Conditions: Temperature and pH where enzyme works best

 \bullet \mathbf{Active} $\mathbf{Site:}$ Part of enzyme where reaction occurs

• **Denaturation:** Permanent unfolding of enzyme structure

- \bullet $\,{\bf pH:}\,$ Measure of acidity (low) or basicity (high)
- \bullet ${\bf Catalase:}$ Enzyme that breaks down hydrogen peroxide