Name:	Date:
	Section:
Enzyme l	Environment Activity
Investigating Environmenta	al Effects on Enzyme Function
Phase 1: ENGAGE (5 min	utes)
Getting Started: Open peebedu.com	and navigate to Enzyme Environmental Impact Explorer
Read the introduction popup to underst	and enzyme structure, temperature, and pH effects.
•	nmental conditions affect enzyme structure and function? s have different optimal conditions? What molecular on?
Pre-Activity Predictions:	
Based on your knowledge of protein stru	icture:
• How should temperature affect en	zyme activity?
Which digestive enzyme would wo	rk best in the stomach?

Phase 2: EXPLORE (20 minutes)

Systematic Investigation of Enzyme Conditions

Part A: Enzyme Selection and Initial Observations

Select \mathbf{Pepsin} first

•	Observe	enzyme	structure	at	$25^{\circ}\mathrm{C}$	рН	7.0
---	---------	--------	-----------	----	------------------------	----	-----

• Enzyme movement: _____

• Structural state: Folded / Unfolded

Part B: Temperature Investigation

Keep pH at 7.0, vary temperature systematically:

Temperature	Enzyme Activity	Ion Behavior
0°C		
20°C		
40°C 60°C		
00 C		
80°C		What happens to ion behavior at 80°C?

Phase 3: EXPLAIN (10 minutes)

Molecular	Mechanisms	Analysis
-----------	------------	-----------------

Complete the molecular explanations: • Low pH \rightarrow excess H+ \rightarrow protonation of groups \rightarrow charge • Charge repulsion \rightarrow protein \rightarrow loss of	Temperature Effects - Identify Patterns:
Complete the molecular explanations: • Low pH → excess H+ → protonation of groups → charge • Charge repulsion → protein → loss of Structure-Function Relationship: Explain how the simulation demonstrates: • Primary structure: • Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	\bullet Pattern 1: Increased temperature \rightarrow increased energy
Complete the molecular explanations: • Low pH → excess H+ → protonation of groups → charge • Charge repulsion → protein → loss of Structure-Function Relationship: Explain how the simulation demonstrates: • Primary structure: • Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	
Complete the molecular explanations: • Low pH → excess H+ → protonation of groups → charge • Charge repulsion → protein → loss of Structure-Function Relationship: Explain how the simulation demonstrates: • Primary structure: • Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	
Complete the molecular explanations: • Low pH → excess H+ → protonation of groups → charge • Charge repulsion → protein → loss of Structure-Function Relationship: Explain how the simulation demonstrates: • Primary structure: • Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	
Complete the molecular explanations: • Low pH → excess H+ → protonation of groups → charge • Charge repulsion → protein → loss of Structure-Function Relationship: Explain how the simulation demonstrates: • Primary structure: • Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	• Pattern 3: Denaturation is (reversible/irreversible) in most cases
 Low pH → excess H+ → protonation of groups → charge Charge repulsion → protein → loss of Structure-Function Relationship: Explain how the simulation demonstrates: Primary structure: Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH: 	pH Effects - Cause and Effect:
 Low pH → excess H+ → protonation of groups → charge Charge repulsion → protein → loss of Structure-Function Relationship: Explain how the simulation demonstrates: Primary structure: Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH: 	
 Low pH → excess H+ → protonation of groups → charge Charge repulsion → protein → loss of Structure-Function Relationship: Explain how the simulation demonstrates: Primary structure: Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH: 	
 Low pH → excess H+ → protonation of groups → charge Charge repulsion → protein → loss of Structure-Function Relationship: Explain how the simulation demonstrates: Primary structure: Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH: 	
 Charge repulsion → protein → loss of Structure-Function Relationship: Explain how the simulation demonstrates: Primary structure: Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH: 	Complete the molecular explanations:
Structure-Function Relationship: Explain how the simulation demonstrates: • Primary structure: • Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	• Low pH \rightarrow excess H+ \rightarrow protonation of groups \rightarrow charge
Structure-Function Relationship: Explain how the simulation demonstrates: • Primary structure: • Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	
Structure-Function Relationship: Explain how the simulation demonstrates: • Primary structure: • Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	
Structure-Function Relationship: Explain how the simulation demonstrates: • Primary structure: • Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	
Primary structure: Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	• Charge repulsion \rightarrow protein \rightarrow loss of
• Active site integrity: Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	Structure-Function Relationship: Explain how the simulation demonstrates:
Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	• Primary structure:
Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	
Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	
Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	
Digestive System Adaptation: Match enzyme to digestive location based on optimal pH:	• Active site integrity:
	(F12 0.0). <u>111111</u>
• Small intestine (pH ~8):	• Small intenting (pH ~9).

Phase 4: ELABORATE (10 minutes)

, ,	
Real-World Applications	
Scenario Analysis:	
Fever Response: Normal body temp: 37°C, Fever: 40°C	
• Which enzymes remain functional?	
• Evolutionary advantage of fever?	
Antacid Effects: Patient takes antacids, raising stomach pH from 2 to 5:	
• Effect on pepsin activity:	
• Alternative solutions:	
Lactose Intolerance: Based on lactase properties:	
• Optimal conditions:	
-	
• Effect of consuming hot beverages with dairy:	

Phase 5: EVALUATE (5 minutes)

Assessment	Questions
Assessment	Questions

Data Analy	vsis:	Plot	enzyme	activity	curves	for	one	enzyme	showing	വര്:
Dava Milai,	y DID.	1 100	CIIZ,y IIIC	acorvioy	Cui ves	101	OHC	CIIZ y IIIC	DIIOWII	გ.

- Temperature vs. activity (bell curve)
- pH vs. activity (bell curve)

Explain the molecular basis for each curve shape. (3 pts)

Pattern Application: You discover a new enzyme from thermophilic bacteria with optimal temperature of 75°C. Predict:

• Likely structural a	daptations:
• Industrial applicat	ions:
(3 pts)	
Systems Integration: I unfolding) accurately rep	Explain how the simulation's visual elements (movement, charge interactions present:
• Kinetic energy cha	nges:
• Hydrophobic collapted (4 pts)	ose:
Model Evaluation:	
Most accurate repr	resentation:
• Missing element: _	

 $\textbf{Research Challenge:} \ \, \textbf{Investigate one enzyme adaptation:} \\$

- Psychrophilic enzymes (cold-adapted)
- Thermophilic enzymes (heat-adapted)

• Acidophilic enzymes (acid-adapted)	
Compare structural features to mesophilic enzymes:	