| Name: | Date: | |-------|----------| | | Section: | #### **DNA Replication Simulator Activity** ### The Amazing Process of DNA Replication #### Phase 1: ENGAGE (5 minutes) Getting Started: Open peebedu.com and navigate to DNA Replication Simulator Click through the introduction to learn about DNA replication. **The Big Question:** Before every cell division, DNA must be copied perfectly. How does a cell copy 3 billion base pairs without making mistakes? _____ #### Quick Review: - DNA bases: A pairs with ___, G pairs with ___ - DNA strands run in opposite directions (antiparallel) - New DNA is always built 5' to 3' **Think About It:** If you had to copy a book, would it be easier to: _____ Copy it all at once from start to finish Copy it in sections with multiple helpers DNA uses the second strategy! Let's see how. # Phase 2: EXPLORE (20 minutes) | Step-by-Step DNA Replication Part A: Getting DNA Ready | | |---|--| | | | | What happens? | | | | | | Why needed? Think of untangling headphone wires! | | | Tool 2 - Helicase: Apply to the relaxed DNA | | | What it does: What shape forms? This is the 'replication' | | | Part B: Starting Points | | | Tool 3 - Primase: Apply to the unwound DNA | | | Count the RNA primers: | | | • Bottom strand (leading): primer(s) | | | Key Insight: DNA polymerase can't start from scratch! Part C: Building New DNA | | | Tool 4 - DNA Polymerase: Click on EACH strand separately! | | | Leading strand (bottom): | | | • Synthesis direction: Toward / Away from fork | | | | | | Lagging strand (top): | | | • Synthesis direction: Toward / Away from fork | | | | | | Interactive Building: Drag the correct nucleotides! | |---| | Tips for success: | | • A matches with | | | | | | • Watch the 'Need:' hint | | • Green = correct, Red = wrong | | Part D: Finishing Up | | Tool 5 - DNA Ligase: Apply to complete replication | What does it connect? ____ These chunks are called '____ fragments' # Phase 3: EXPLAIN (15 minutes) | Making Sense of What You Saw | |---| | The Key Patterns (Find 3): | | • Pattern 1: DNA synthesis ALWAYS goes' to' | | | | • Pattern 3: Multiple enzymes must work in | | Fill in the Process Map: | | DNA twisted \rightarrow Topoisomerase \rightarrow DNA DNA closed \rightarrow Helicase \rightarrow DNA No startion point \rightarrow Primase \rightarrow RNA Template ready \rightarrow DNA Polymerase \rightarrow New Fragment separate \rightarrow Ligase \rightarrow Continuous | | The Replication Team: Match each enzyme to its job: | | Enzyme: Job: | | ◆ Topoisomerase ◆ Joins DNA pieces | | • Helicase • Adds RNA starters | | • Primase • Untwists DNA | | • DNA Polymerase • Unzips DNA | | • Ligase • Builds new DNA | | Why Different on Each Strand? | | | | Draw arrows showing synthesis direction: | | Leading strand: \longrightarrow Lagging strand: \longleftarrow \longleftarrow | | The lagging strand is made backwards in pieces because | # Phase 4: ELABORATE (12 minutes) | Real-World Connections | |---| | Application Scenarios: | | DNA Testing: Crime labs use PCR to copy DNA evidence. Which enzyme is most like the one in PCR? Why do they heat the DNA first? (Hint: What does helicase do?) | | Cancer and Replication: Some cancers have mutations in DNA repair enzymes. Predict what happens if: | | • Polymerase makes more mistakes: | | | | Antibiotics: Some antibiotics block bacterial DNA replication. Good target enzyme: Why it works: Design Challenge: | | | | You're creating a replication inhibitor drug. | | • Target which step? | | | | • Side effects to consider? | ## Phase 5: EVALUATE (8 minutes) | Show What You Know | |--| | Sequence the Steps: Number in order (1-5): DNA polymerase synthesizes new strands Ligase joins fragments Helicase unwinds DNA Primase adds RNA primers Topoisomerase relaxes DNA | | Explain the Difference: | | | | | | | | Your friend asks: 'Why can't both strands be copied the same way?' Your answer: | | Problem Solving: A cell has a mutation - it can't make Okazaki fragments. | | • Which enzyme is probably broken? | | | | • Can the cell still replicate its DNA? Yes / No / Partially | | Make Connections: How does accurate DNA replication relate to: | | • Inheritance: | | | | | | • Cancer: | | Model Check: | | | | • One thing that surprised you: | | | | | | | | | #### Vocabulary Summary: - Replication Fork: Y-shaped region where DNA unwinds - Leading Strand: Synthesized continuously toward fork - Lagging Strand: Synthesized in fragments away from fork - Okazaki Fragments: Short DNA pieces on lagging strand \bullet ${\bf Semiconservative:}$ Each new DNA has one old strand, one new