Name:	Date:		
	Section:		
Cell Diffusion	Explorer Activity		
The Amazing Cell Shape Race	!		
Phase 1: ENGAGE (5 minutes)		
Getting Started: Open peebedu.com and n	avigate to Cell Diffusion Explorer		
Read the introduction popup to learn about of	cells and diffusion.		
Think About It: Have you ever wondered Why aren't there any basketball-sized cells ro	why you can't see most cells without a microscope? lling around?		
Opening Challenge: Draw what you think	the 'best' cell shape would be for absorbing food:		
[Drawing space]			
Quick Vote: Which shape would absorb nut	rients fastest?		

Ball shape Star shape Snake shape Cube shape

Phase 2: EXPLORE (18 minutes)

The Great Cell Shape Experiment

Part A: Shape Testing

Look at the Cell Shapes panel. Each shape ha
--

- V = Volume (how much space inside)
- SA = Surface Area (how much 'skin' it has)

Drag these 4 shapes into the beaker:

- Circle
- Star
- Tall Rectangle
- Wide Rectangle

Prediction Time! Which will turn blue fastest? _____ Why? ____

Click 'Start/Resume All' and watch what happens!

Data Table:

•

Part B: Weird Shapes

Reset and try these strange shapes:

- T-Shape
- Amoeba
- Squiggle

Quick Notes:

• Fastest weird shape: _____

Part C: Do the Math

Calculate SA/V for two shapes:

Circle: SA \div V = ____ \div 100 = ____ Star: SA \div V = ___ \div 100 = ____

Which has a bigger SA/V ratio? _____ Which diffused faster? ____

Coincidence? Yes / No

Phase 3: EXPLAIN (12 minutes)

Discovering the Rules of Cell Survival

Pattern	Hunt	(Find	3):
---------	------	-------	-----

Pattern Hunt (Find 3):				
• Pattern 1: Shapes with arms/points absorb (faster/slower)				
• Pattern 3: The bigger the SA/V ratio, the the diffusion				
Cause and Effect Map: Fill in what leads to what:				
More surface area \rightarrow More \rightarrow Nutrients enter Less volume \rightarrow Less inside $-$ Nutrients reach faster High SA/V ratio \rightarrow absorption \rightarrow Cell stays				
The Size Problem: Imagine a cell that doubles in size like a balloon:				
• Surface (outside): Gets (a little/a lot) bigger				
• Problem: Not enough for all the				
Troblem. The chedgi for all the				

Real Cells Are Smart! Match the cell to its clever shape:

Cell Type: Shape Trick:

- Red blood cell Has tiny fingers (microvilli)
- $\bullet\,$ Nerve cell \bullet Flat like a pancake
- \bullet Intestine cell \bullet Long and branched
- \bullet Lung cell \bullet Super thin

Phase 4: ELABORATE (10 minutes)

Cell Shapes in Your Body
Body Cell Detective: Different cells have different jobs. Look at their shapes:
Red Blood Cells (carry oxygen):
• Shape: Flat disc with dent
• What if they were spheres?
Nerve Cells (send messages):
• Shape: Long with branches
• Trade-off:
Design Challenge:
You're designing a new cell for absorbing vitamins. Draw it:
[Drawing space]
Three features that help it absorb fast:
Think Big Picture: Why do elephants have the same size cells as mice?

Phase 5: EVALUATE (5 minutes)

Check Your Understanding

True or False (circle one):

- T / F: Star-shaped cells absorb nutrients faster than round cells
- T / F: Cells can grow as big as they want
- T / F: More surface area helps cells survive

Fill in the Bla	nks: Cells need to stay	because as they grow	v, their inside s	space grows
than their outsic	de surface. This means no	t enough can get i	in to feed the	whole cell.
Problem Solve	er: Your pet cell is having	trouble getting enough	food. Give it 2	2 pieces of advices

Draw and Explain:

Draw the worst possible cell shape for survival:

[Drawing space]

Why is it bad? _____

Fun Fact Investigation: Look up one of these and share:

- Why octopus blood cells are different
- How cactus cells deal with being big
- What the largest single cell is

Model Rating: This simulation helped me understand cells: _____ Not much Some A lot!

One question I still have: _____

• -

Vocabulary Box:

- **Diffusion:** Stuff spreading from where there's lots to where there's little
- Surface Area (SA): The outside 'skin' of the cell
- Volume (V): The inside space of the cell

 \bullet ${\bf SA/V}$ Ratio: How much skin per inside space

• Nutrients: Food for cells

Key Vocabulary

See activity for vocabulary specific to this topic.