Name:	Date:					
	Section:					
Cell Diffusion Explorer Activity						
The Cell Size Challenge: Surface	e Area vs. Volume					
Phase 1: ENGAGE (5 minutes)						
Getting Started: Open peebedu.com and nav	rigate to Cell Diffusion Explorer					
Read the introduction popup about diffusion ar	nd SA/V ratio.					
The Big Question: Why don't we have cells th huge?	e size of basketballs? What stops cells from growing					
Quick Think: List 3 things cells need to take get rid of:, How do these materials	in:, List 2 things cells need to s get in/out?					
Prediction Time:						
If you have cells with the same volume but diffe	erent shapes, which would survive better?					

Round cell Star-shaped cell Long thin cell

Phase 2: EXPLORE (20 minutes)

Investigation: Shape Matters!
Part A: Testing Basic Shapes
Drag these 4 shapes into the beaker:
• Circle (like a sphere)
• Star
• Tall Rectangle
• T-Shape
Before starting, record the data shown:
• ——— 100
Click 'Start/Resume All' and watch the diffusion!
Observation Data:
•
Part B: Extreme Shapes
Reset and try these shapes:
• Amoeba
• Crescent
• Squiggle
Quick Analysis:
• Fastest shape:
• What's different about them?
Part C: Finding Patterns
Graph your results:
• Draw a bar graph with Shape on X-axis and Time on Y-axis
• Add SA/V ratios below each bar
Pattern Check with Partner: Compare your results. Do you see the same pattern? The pattern

Phase 3: EXPLAIN (15 minutes)

Making Sense of Surface Area and Volume

The Key Patterns ((Identify 3)):
--------------------	--------------	----

	8 7 .	atio =		
Pattern 3:	Round shapes l	nave the	_ SA/V ratio	
y This Ma	tters:			

More surface area \rightarrow ? \rightarrow Faster diffusion Less volume \rightarrow ? \rightarrow Shorter distance to center High

The Growth Problem: When a cell doubles in size:

• Surface area increases ___X

 $SA/V \rightarrow ? \rightarrow Better survival$

 $\bullet~{\rm SA/V}$ ratio _____ (increases/decreases)

Real Cell Solutions: Match the adaptation to its benefit:

Cell Adaptation: Benefit:

- Microvilli Increases reach
- $\bullet\,$ Flat shape $\bullet\,$ Adds surface area
- Long projections Minimizes volume
- Staying small Maintains high SA/V

Phase 4: ELABORATE (12 minutes)

Connecting to Real Biology	
Cell Type Analysis: Look at these real cells and explain their shapes:	
Red Blood Cell (disc-shaped):	
• Why not spherical?	
Nerve Cell (long with branches):	
• How does shape help function?	
Root Hair Cell (elongated):	
• Purpose of the 'hair':	
Design Challenge:	
You're engineering a cell for maximum nutrient absorption. Sketch your design:	
[Drawing space]	
Explain 3 features that maximize SA/V:	
Population Thinking: Start with one cell. It grows and divides.	
• Option A: One cell doubles in size	

• Option B: Cell divides into two small cells

Which option maintains better diffusion? ____ Why? ____

Phase 5: EVALUATE (8 minutes) Show What You Know Explain the Paradox: Elephants are huge but their cells are the same size as mouse cells. Why? **Problem Solving:** A cell is dying because it can't get nutrients fast enough. List 3 ways to save it: Pattern Application: You observe two unknown cells under a microscope: • Cell A: Takes 2 minutes to absorb dye • Cell B: Takes 8 minutes to absorb dye What can you infer about their shapes? _____ Make a Claim: Complete with evidence from your data: _____ "Cells must stay small because ____. My evidence is ____. This matters because ____." Model Check: • One thing this model shows well: _____

Key Concepts:

- SA/V Ratio: Surface area divided by volume
- Diffusion: Movement from high to low concentration
- Size Constraint: Cells must stay small for efficient exchange

 \bullet Shape Adaptations: Projections and flat shapes increase $\mathrm{SA/V}$