Name:	Date:			
	Section:			
Cell Diffusion Exp	Cell Diffusion Explorer Activity			
Investigating Cell Size Limitations	Γhrough Diffusion			
Phase 1: ENGAGE (5 minutes)				
Getting Started: Open peebedu.com and navigate	to Cell Diffusion Explorer			
Read the introduction popup to understand SA/V $\rm ra$	atio and its importance.			
Essential Question: Why are cells microscopic? What larger?	That prevents them from growing indefinitely			
Initial Hypothesis: Based on your knowledge of diffusion fastest if all have the same volume:	fusion, predict which cell shape will complete			
• Circle (sphere-like):				
• Tall rectangle:				

Explain your reasoning:

Phase 2: EXPLORE (20 minutes)

Describe the relationship: _____

α		Investigation	. C 📿 . 11	C1	$\mathbf{D} \cdot \mathbf{c} \cdot \cdot$
-	veromatic	Investigation	$\Delta T = \Delta \Pi$	Shane and	LUITIIGIAN
\sim	VSUCIIIauic	TII V CSUI E AUIOII	or con	Duabe and	

Systematic Investigation of Cell Shape and Diffusion
Part A: Shape Comparison Drag the following shapes into the beaker (all have V=100):
• Circle
• Star
• Tall Rectangle
• Wide Rectangle
Before starting diffusion, calculate SA/V for each:
Click 'Start/Resume All' and observe diffusion
Data Collection:
•——
Part B: Extreme Shapes Reset and test these shapes:
• T-Shape
• Crescent
• Squiggle
• Amoeba
Pattern Recognition: Which shapes diffused fastest?
Part C: Mathematical Analysis Plot your data:
• X-axis: SA/V ratio
• Y-axis: Time to complete diffusion

Phase 3: EXPLAIN (10 minutes)

Thate o. Litt (10 minutes)				
Connecting Structure to Function				
Identify Key Patterns (List 3):				
• Pattern 1: As SA/V ratio increases, diffusion time				
• Pattern 3: Compact shapes (like circles) have SA/V ratios				
Cause-Effect Analysis: Complete the relationships:				
\bullet Larger SA \to More membrane area \to exchange points				
Cell Size Limitations: If a spherical cell doubles its radius:				
• Surface area increases by factor of:				
• SA/V ratio changes by factor of:				

Real Cell Adaptations: Match the cell type to its shape adaptation:

- \bullet Red blood cell \bullet Branching projections
- \bullet Neuron \bullet Flattened disc
- Root hair cell Elongated extension
- \bullet Alveolar cell \bullet Thin and flat

Phase 4: ELABORATE (10 minutes)

Applying Concepts to Biological Systems

Scenario Analysis: Muscle Cell Problem: Active muscle cells need rapid oxygen delivery.			
• Why can't muscle cells just grow larger?			
Intestinal Adaptation: Small intestine cells have microvilli (tiny projections).			
• Calculate: If a cubic cell (side=10m) adds 1000 microvilli, each adding 5m ² surface area:			
• New SA: m ²			
Evolutionary Trade-offs: Some organisms have giant cells (bird eggs, algae).			
• What strategies might they use?			

Phase 5: EVALUATE (5 minutes)

Assessment Questions

Pattern Application: A cell biologist observes that cancer cells are typically smaller than normal cells of the same type. Using SA/V principles, explain why this might provide a growth advantage. (3 pts)

Data Analysis: Two cells have equal volumes. Cell A takes 30 seconds to fully diffuse nutrients, Cell B takes 90 seconds. What can you conclude about their shapes? Calculate their approximate SA/V ratio difference. (3 pts)

Systems Integration: Explain how the SA/V ratio constraint connects to:

- Membrane transport (Unit 2.4)
- Cellular respiration needs (Unit 3)
- Cell communication (Unit 4)

(4 pts)

Model Evaluation: What simplifications does this 2D model make compared to real 3D cells? How might results differ? _____

Research Question: How do different organisms overcome SA/V limitations?

Investigate one example:

- Xenophyos (giant single-celled organism)
- Caulerpa (giant algae cell)
- Plasmodial slime molds

Explain their structural adaptations: _____