Name:	Date:
	Section:
Aquarium S	imulator Activity
The Nitrogen Cycle: Chemical	Transformations in Aquatic Systems
Phase 1: ENGAGE (5 minutes	
Getting Started: Open peebedu.com and n	avigate to Aquarium Simulator
Read the introduction popup to understand t	he nitrogen cycle basics.
	onia from fish waste doesn't accumulate to toxic levels, nature has a built-in chemical processing system.
Initial Model Development: Draw a diagram (NH ₃) in natural water:	gram showing what you think happens to ammonia
[Space for drawing]	
Peer Discussion: Compare your model with	a partner. Identify:
• One chemical transformation you both i	included:

Phase 2: EXPLORE (20 minutes)

Investigation: Observing the Nitrogen Cycle
Part A: Systematic Investigation
Start with an empty aquarium. Use each control systematically:
Step 1: Add Fish
• Prediction: What will happen to nitrogen levels?
Step 2: Add Bacteria
• Prediction: How will bacteria affect each compound?
Step 3: Add Plants
• Prediction: What role will plants play?
Part B: Pattern Analysis
Identify patterns in your data:
• Pattern 1:
• Pattern 3:
Cause-and-effect relationships:
• When I added, then happened
addod, onon napponod

Collaborative Checkpoint: Form groups of 4. Each person explores ONE intervention:

- Student 1: Add bacteria and observe changes
- Student 2: Add plants and observe changes
- Student 3: Add more fish and observe changes
- Student 4: Remove organisms and observe changes

Share your observations about how each intervention affects nitrogen compounds.

Phase 3: EXPLAIN (15 minutes)

Constructing Scientific Arguments

Pattern Analysis:

- Graph the nitrogen compound concentrations over time
- Circle the key turning points where patterns change
- Label cause-and-effect relationships on your graph

Systems Model: Create a diagram showing:

- How each organism affects nitrogen compounds
- Which changes trigger other changes
- Any feedback loops you discovered

Developing Your Argument:
ullet 'How does the nitrogen cycle demonstrate interconnected systems?'*
Claim: The nitrogen cycle requires
Evidence: (List 3 specific patterns with data)
• Pattern 1:
• Pattern 3: Reasoning: These patterns show that
Peer Review: Exchange with another group. Ask:
• Did they identify the same patterns?

Phase 4: ELABORATE (12 minutes)

Application: Understanding Aquarium Management

Context: You're helping a friend set up a new aquarium.

Your Task: Work in teams to design a healthy aquarium ecosystem.

Design Challenge:

- Your friend has added fish to a brand new aquarium
- You need to explain what will happen and how to manage it

Test Your Ideas: Use the simulator to explore:

•	• What happens in a new aquarium with fish?		

• What role do plants play? _____

Create a Guide:

- Draw the nitrogen cycle in an aquarium
- Explain each transformation
- List recommendations for maintaining balance

Present Your Solution: Share your guide and explain:

- The sequence of changes in a new aquarium
- Why patience is important
- How different organisms contribute to balance

Phase 5: EVALUATE (8 minutes)

Assessment & Model Critique	
Pattern Recognition Test:	
• Describe 3 patterns you discovered:	
Prediction Challenge:	
Your friend's aquarium has high ammonia but no nitrite or nitrate.	
• What's missing from the system?	
• Draw the sequence of changes you expect:	
Systems Thinking: Explain how removing each component would affect the system:	
• No fish:	
No. alamata	
• No plants:	
Model Evaluation: Patterns Well-Represented:	
•	
Real-World Complexity Missing:	
•	