Name:	Date:
	Section:

Aquarium Simulator Activity

Investigating Bacterial Nitrification: Enzyme Kinetics and Biogeochemistry

Phase 1: ENGAGE (10 minutes)

Getting Started: Open peebedu.com and navigate to Aquarium Simulator

Research Context: Read the introduction popup in the simulator, then consider this excerpt from *Martiny et al. (2021) Nature Reviews Microbiology*:

 $\dot{\epsilon}$ 'Microbial communities drive Earth's biogeochemical cycles, yet predicting their responses to environmental perturbations remains challenging. In aquatic systems, the sequential oxidation of nitrogen compounds (NH $_3 \to NO_2^- \to NO_3^-$) requires distinct microbial guilds with specific metabolic capabilities...'

Pre-Investigation Questions: Based on the reading, predict what will happen to ammonia, nitrite, and nitrate concentrations over time in the aquarium.

What role do bacteria play in transforming nitrogen compounds? _____

Phase 2: EXPLORE (15 minutes)

rnase 2: EAFLORE (13 minutes)	
ematic Investigation	
the simulator controls, explore the nitrogen cycle:	
d Setup: Add fish to start the nitrogen cycle	
Prediction: What will happen to nitrogen compounds?	
Bacteria: Click to add nitrifying bacteria	
Prediction: How will this affect the nitrogen compounds?	
Plants: Add aquatic plants to the system	
Prediction: What role will plants play?	

Data Collection Table: Nitrogen Transformation

Pattern Check: Compare observations with a partner. What patterns do you both see? _____

Phase 3: EXPLAIN (10 minutes)

Pattern Analysis and Scientific Explanation

Graph your data: Create a line graph showing changes in NH₃, NO₂⁻, and NO₃⁻ over time. Identify Patterns (List at least 3):

• Pa	tern 1:
• Pa	tern 3:
Cause-a	nd-Effect Relationships:
• Wł	en fish were added, what happened? Why?
• Wł	en fish were added, what happened? Why?

 \bullet What triggers the conversion of NH3 to NO2^-? _____

Systems Thinking: Create a diagram showing:

- How organisms interact in the nitrogen cycle
- \bullet Which changes trigger other changes
- Any feedback loops you observed

CER Statement: Write a claim about the nitrogen cycle supported by your evidence.

Phase 4: ELABORATE (10 minutes)

Connecting to Human Impacts

Scenario: Agricultural runoff adds ammonia to a lake ecosystem.

Based on your observations, answer: What pattern of nitrogen transformations would you expect to see? _____ Why might excess nitrate lead to eutrophication? _____ How does this connect to EK 8.7.C.1 about human impacts on ecosystems? _____

Phase 5: EVALUATE (5 minutes)

Assessment Questions

Pattern Recognition: Describe two patterns you observed in the nitrogen cycle. For each pattern, explain what causes it. (4 pts)

Cause-and-Effect: If you add more fish to an established aquarium, predict the sequence of changes that would occur. Explain why each change triggers the next. (3 pts)

Systems Thinking: How do bacteria, plants, and fish interact in the nitrogen cycle? What would happen to the system if one component was removed? (3 pts)

Model Evaluation: Complete the Model Evaluation Form, focusing on which patterns the model shows well and which real-world complexities it simplifies.